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3000 Rössler Oscillators 

Diffusively Coupled in a Scale-Free network

Hubs degree 165 

Lower degree 2
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FIG. 1: [Color online] Hub synchronization in a BA scale-
free network of 3000 coupled Rössler oscillators with coupling
parameter α = 0.3. a) Time series of the largest hub xn

(full line) and the second largest xn−1 (light gray line). The
coupling term ηn−1 (bold line) spoiling the stability of the hub
synchronization is small as predicted by the local mean field
arguments. b) Time series of the largest hub xn (full line) and
of a low-degree node x2000 (light gray line) The corresponding
node degrees are kn = kn−1 = 165 and k2000 = 3.

dim(U) = (n − �)m and dim(S) = �m. Notice that on
the subspace S all Lyapunov exponents are negative.

It remains to show that the coupling term can be made
as small as one wishes whenever kn is large enough. Thus,
results of qualitative theory of ordinary differential equa-
tions guarantee that the linear stability is not affected by
small continuous perturbations [19].

By our hypothesis on the symmetry of the matrix A
the spectral theorem guarantees that

A = NJN−1.

where N is an orthogonal matrix and J =
diag(λ1, λ2, . . . ,λn) is the matrix of the eigenvalues of A
ordered according to their magnitudes λ1 ≤ λ2 ≤ · · · <
λn.

We endow the vector space Rmn with the norm � · �∗
such that for u ∈ Rmn we have �u�∗ = �N ⊗ Imu�∞,
where �u�∞ = supi |ui| for i = 1, 2, · · · , nm. We also
make use of the induced matrix norms. Now we claim
that given δ > 0 there exists K such that for all kn > K
we have

�B�∗ < δ.

Indeed, by using the induced matrix norm we can obtain
bounds in terms of the largest eigenvalue of A. We post-

pone the technical details and go directly to the result
which reads �A⊗ E�∗ ≤ λn�E�∞.

Under mild conditions [20] the largest eigenvalue of a
scale-free network scales almost surely as λn = kβ

n, where
depends on γ. We have two distinct cases: (i) β = 3− γ
for 2 < γ < 2.5; and (ii) β = 1/2 for γ > 2.5. Putting
all estimates together yields

�B�∗ ∝
1

k1−β
n

. (5)

Hence, for kn large enough our claim follows.
This analysis is grounded on the fact that λn/kn → 0.

This is also the case for correlated scale-free networks [10],
whenever the correlations preserve the scale-free charac-
ter. These moderate correlations are immaterial for hub
synchronization, as finite size correlation in the BA scale-
free model.

In summary, we analyzed a general phenomenon in the
synchronization of large scale-free networks, namely, the
synchronization of hubs even when the entire network
is out of synchrony. Our theoretical analysis provides in-
sights into further generalizations for the master stability
function. The stability analysis of the synchronous hubs
can be tailored to the master stability function and the
coupling term due to the underlying network dynamics.
We have shown that for large scale-free networks the cou-
pling term can be controlled, effectively acting as a small
noise-like perturbation on the hubs.

Hub synchronization has counterintuitive effects. For
example, the hubs do not need to be directly connected
to synchronize. Remarkably, when the hubs synchronize,
the low-degree nodes are out of synchrony; these nodes,
however, are responsible for mediating the exchange of
information between the hubs. This seems to challenge
our understanding of the role of synchronization in the
exchange of information within complex networks [9].

We believe that our findings provide strong evidence
that incomplete, hub-driven, synchronization may be at
least as important and persistent in real-world networks
as other forms of synchronization and collective behaviors
previously examined in the literature.

The author is in debt with Rafael D. Vilela, Alexei M.
Veneziani, Murilo S. Baptista and Adilson E. Motter for
illuminating discussions, a detailed and critical reading
of the manuscript. This work was partially supported by
CNPq grant 474647/2009-9.
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Fig. 1. (a) Star-coupled nodes. (b) Ring of diffusively coupled systems.

the only edge k ≡ l − 1 and thus the path length z(P1,l) = 1. From node i > 1 (i #= l) to node l there is also only a

single path consisting of the edges i − 1 and k ≡ l − 1 and thus with path length z(Pi,l) = 2. Therefore,

n
∑

j>i;k∈Pij

z(Pij) = z(P1,l) +
l−1
∑

i=2
z(Pi,l) +

n
∑

j=l+1
z(Pl,j) = 1+ 2(l − 2) + 2(n − l) = 2n − 3,

and we arrive at the following conclusion.

Statement 1. The synchronization condition (24) for the star-coupled network becomes

ε1j(t) > ε∗ = a
2n − 3

n
for j = 2, n and for all t. (25)

Obviously, to provide complete global synchronization of all nodes in the star-coupled network, the weakest of all

coupling strengths ε1,j must satisfy the condition (25).

It follows from (25) that if the number of oscillators n is large enough, then the bound for the synchronization

threshold is ε∗ ∼= 2a. Hence, the synchronization threshold in such a large network does not depend on the number

of oscillators.

Time Series of the Roesslers
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FIG. 1: [Color online] Hub synchronization in a BA scale-
free network of 3000 coupled Rössler oscillators with coupling
parameter α = 0.3. a) Time series of the largest hub xn

(full line) and the second largest xn−1 (light gray line). The
coupling term ηn−1 (bold line) spoiling the stability of the hub
synchronization is small as predicted by the local mean field
arguments. b) Time series of the largest hub xn (full line) and
of a low-degree node x2000 (light gray line) The corresponding
node degrees are kn = kn−1 = 165 and k2000 = 3.

dim(U) = (n − �)m and dim(S) = �m. Notice that on
the subspace S all Lyapunov exponents are negative.

It remains to show that the coupling term can be made
as small as one wishes whenever kn is large enough. Thus,
results of qualitative theory of ordinary differential equa-
tions guarantee that the linear stability is not affected by
small continuous perturbations [19].

By our hypothesis on the symmetry of the matrix A
the spectral theorem guarantees that

A = NJN−1.

where N is an orthogonal matrix and J =
diag(λ1, λ2, . . . ,λn) is the matrix of the eigenvalues of A
ordered according to their magnitudes λ1 ≤ λ2 ≤ · · · <
λn.

We endow the vector space Rmn with the norm � · �∗
such that for u ∈ Rmn we have �u�∗ = �N ⊗ Imu�∞,
where �u�∞ = supi |ui| for i = 1, 2, · · · , nm. We also
make use of the induced matrix norms. Now we claim
that given δ > 0 there exists K such that for all kn > K
we have

�B�∗ < δ.

Indeed, by using the induced matrix norm we can obtain
bounds in terms of the largest eigenvalue of A. We post-

pone the technical details and go directly to the result
which reads �A⊗ E�∗ ≤ λn�E�∞.

Under mild conditions [20] the largest eigenvalue of a
scale-free network scales almost surely as λn = kβ

n, where
depends on γ. We have two distinct cases: (i) β = 3− γ
for 2 < γ < 2.5; and (ii) β = 1/2 for γ > 2.5. Putting
all estimates together yields

�B�∗ ∝
1

k1−β
n

. (5)

Hence, for kn large enough our claim follows.
This analysis is grounded on the fact that λn/kn → 0.

This is also the case for correlated scale-free networks [10],
whenever the correlations preserve the scale-free charac-
ter. These moderate correlations are immaterial for hub
synchronization, as finite size correlation in the BA scale-
free model.

In summary, we analyzed a general phenomenon in the
synchronization of large scale-free networks, namely, the
synchronization of hubs even when the entire network
is out of synchrony. Our theoretical analysis provides in-
sights into further generalizations for the master stability
function. The stability analysis of the synchronous hubs
can be tailored to the master stability function and the
coupling term due to the underlying network dynamics.
We have shown that for large scale-free networks the cou-
pling term can be controlled, effectively acting as a small
noise-like perturbation on the hubs.

Hub synchronization has counterintuitive effects. For
example, the hubs do not need to be directly connected
to synchronize. Remarkably, when the hubs synchronize,
the low-degree nodes are out of synchrony; these nodes,
however, are responsible for mediating the exchange of
information between the hubs. This seems to challenge
our understanding of the role of synchronization in the
exchange of information within complex networks [9].

We believe that our findings provide strong evidence
that incomplete, hub-driven, synchronization may be at
least as important and persistent in real-world networks
as other forms of synchronization and collective behaviors
previously examined in the literature.

The author is in debt with Rafael D. Vilela, Alexei M.
Veneziani, Murilo S. Baptista and Adilson E. Motter for
illuminating discussions, a detailed and critical reading
of the manuscript. This work was partially supported by
CNPq grant 474647/2009-9.
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Fig. 1. (a) Star-coupled nodes. (b) Ring of diffusively coupled systems.

the only edge k ≡ l − 1 and thus the path length z(P1,l) = 1. From node i > 1 (i #= l) to node l there is also only a

single path consisting of the edges i − 1 and k ≡ l − 1 and thus with path length z(Pi,l) = 2. Therefore,

n
∑

j>i;k∈Pij

z(Pij) = z(P1,l) +
l−1
∑

i=2
z(Pi,l) +

n
∑

j=l+1
z(Pl,j) = 1+ 2(l − 2) + 2(n − l) = 2n − 3,

and we arrive at the following conclusion.

Statement 1. The synchronization condition (24) for the star-coupled network becomes

ε1j(t) > ε∗ = a
2n − 3

n
for j = 2, n and for all t. (25)

Obviously, to provide complete global synchronization of all nodes in the star-coupled network, the weakest of all

coupling strengths ε1,j must satisfy the condition (25).

It follows from (25) that if the number of oscillators n is large enough, then the bound for the synchronization

threshold is ε∗ ∼= 2a. Hence, the synchronization threshold in such a large network does not depend on the number

of oscillators.
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Lorenz Dynamics



p = 0.02

Lorenz Dynamics: Heterogeneous Network

Start with a random network

400 Nodes



k1 = 396

k2 = 387

Lorenz Dynamics: Heterogeneous Network

Include the Hubs randomly 



Difference between of nodes and the main Hub



Time Series of the Lorenz: Hubs and Low-degree
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Network Model

Network Assumptions: Heterogeneity

Hubs

Low degree Nodes



dx

dt
= F(x)

φt

Network Model

Dynamics Assumptions: Stability

and consider the flow



U ⊂ Rm

φt(U) ⊂ U

Network Model

Dynamics Assumptions: Stability

There is an attractor



�g(y, t)� ≤ ε

dy

dt
= F(y) + g(y, t)

ψt

Network Model

Dynamics Assumptions: Stability

such that 

Consider the flow



ν U

����
�

hd(φt
∗ν)−

�
hd(ψt

∗ν)

���� ≤ Mε

h

Network Model

Consider the Borel measure supported on 

for all smooth functions



the globally synchronized motion the collective behavior of the hubs in general are
not associated with a diagonal invariant manifold, that is, if x1 and xi are hubs then
the constrain x1 = xi, typically is not an invariant state of the equations of motion.
A simple solution is possible in the limit of infinitely large heterogeneous networks.

Theorem 1 (Need Improvement) Consider the diffusively coupled model on G(w).
Assume that the conditions on heterogeneity 1 and and dissipation 2 hold. Then, in
limit of infinitely large size, as the coupling strength α increases, the hubs with similar
normalized degrees undergo almost surely a continuous transition to synchronization.

Precisely, consider the quantity

αc = sup
x∈Ω,

1≤i≤m






m�

j=1,
j �=i

|Df(x(t))ij|−Df(x(t))ii





,

(3)

and let all initial condition be given in the absorbing domain. Let |µj − µi| be small
and �xi(s)− xj(s)� ≤ ε be small, if α > αc/µi there is γ > 0 such that

�xi(t)− xj(t)� ≤ γ
α|µj − µi|
µiα− αc

,

for all t ≥ s.

Theorem 2
Consider the diffusively coupled model under satisfying the two assumptions. Let all
initial conditions be independent and identically distributed according to a measure
ν supported on U . Let i and j stand for hubs and let µi > µj and αµi > αc with

µi − µj > O(m−γ)

then

�xi(t)− xj(t)� ≤ K
α(µi − µj)

µiα− αc
,

with probability 1−O(m−γ) and K = K(f).

We first start with a simple case where the output function is the identity. The full
statement taking into account a general smooth output function will be presented
later on. This captures the phenomenon and provides a clear way to the main
statements, and the statement itself needs fewer hypotheses, and consequently fewer
technicalities.
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νn
Initially the measure of the network is product

Main Ideas: Mean Field Reduction



νn
1. Step 

Obtain the evolution of 

Main Ideas: Mean Field Reduction



Ψt : R× Rnm → Rnm

Consider the network flow 

Main Ideas: Mean Field Reduction
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Hence

is the measure for the network
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low deg

Loosely Speaking

Main Ideas: Mean Field Reduction

Low deg are almost independent



Ψt
∗(ν

n) ≈ λt
����
hubs

× [ωt]n−�
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low deg

Loosely Speaking

Take expectations with all the hubs 
coordinates and time fixed
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P(�vi(t)− µiu(t)� ≥ ε) = O

�
1

mγ

�

Mean Field Theory: Uniformity

Main Ideas: Mean Field Reduction



ξ = xj − xi

Study the quantity

i jwhere       and       stand for hubs 

Main Ideas: Stability



dξ

dt
= K(t, µi)ξ + αηi

K(t, µi) =

� 1

0
DF(xi + βξ)dβ − αµiI

where

Main Ideas: Stability



dξ

dt
= K(t, µi)ξ + αηi

Eηi = O(µi − µj) +O

�
1

mγ

�
where

Main Ideas: Stability



Hub Sync Stability

1. Control the coupling so that the homogeneous 
equation is uniformly asymptotic stable

2. Variations of Parameters 



Hub Sync Stability

Numerical study reveals that Hub synchronization it is 
still present on random networks without the 

stability assumption 



The rich socialize

Take Home

Functional Matthew Effect



Cheaper to Synchronize the Hubs

Take Home

αc = O(1)

αc = O(m)

Hubs

Global



Heterogeneity allows for the expression of a rich 
variety of collective phenomena 

Take Home


