Twitter is both a micro-blogging service and a platform for public conversation. Direct conversation is facilitated in Twitter through the use of @’s (mentions) and replies. While the conversational element of Twitter is of particular interest to the marketing sector, relatively few data-mining studies have focused on this area. We analyse conversations associated with reciprocated mentions that take place in a data-set consisting of approximately 4 million tweets collected over a period of 28 days that contain at least one mention. We ignore tweet content and instead use the mention network structure and its dynamical properties to identify and characterise Twitter conversations between pairs of users and within larger groups. We consider conversational balance, meaning the fraction of content contributed by each party. The goal of this work is to draw out some of the mechanisms driving conversation in Twitter, with the potential aim of developing conversational models.