

Can a not-the-most-connected scientist still be important?

Dr Athen Ma and Dr Raúl J. Mondragón School of Electronic Engineering and Computer Science

http://www-personal.umich.edu/~mejn/centrality/poster.pdf

Finding important nodes in networks

Caribbean Reef Trophic Web (foodwebs.org)
Optiz, S. Trophic interactions in Caribbean coral reefs.
ICLARM Tech Rep 43, Manila, Philippines (1996)

Centrality

Node A – Highest degree and betweeness

Removing node A

Efficiency

A graph G(V,E) consists of A set of nodes N and edges E

$$E_{global}(G) = \frac{\sum_{i \neq j \in G} E_{ij}}{N(N-1)} = \frac{1}{N(N-1)} \sum_{i \neq j \in G} \frac{1}{d_{ij}}$$

More complex than anticipated....

Different network configurations

Largest component of the network scientists M. E. J. Newman, Phys. Rev. E 74, 036104 (2006)

A freshwater Food web in a stream in England - Data provided by Dr Guy Woodward, Imperial

Network configurations

- Ghedini and Ribeiro discovered that some networks collapsed prior to removal of all high degree nodes (Physica A, 2011).
 - Suggested that such collapsed must have caused by other configurations in networks.
- Finding nodes that are strategically located in networks.

A network of scientists

A network of scientists

A network of scientists

The rest of the nodes

Node tearing

A. Sangiovanni-Vincentelli et al, IEEE Trans on Circuits and Systems CAS-24 (1977) 709-717.

Start with the node n_i with the min. degree, and put into I

Start with the node n_i with the min. degree, and put into I

Select a node in A with least no of links with nodes in X

Iterating set I	Adjacent set A	X – the rest
1	2	3,4,5,6,7,8
1,2	3,4	5,6,7,8

Start with the node n_i with the min. degree, and put into I

Select a node in A with least no of links with nodes in X

Iterating set I	Adjacent set A	X – the rest
1	2	3,4,5,6,7,8
1,2	3,4	5,6,7,8
1,2,3	4,5	6,7,8
1,2,3,4	5	5,6,7,8
1,2,3,4,5	6,7,8	

Start with the node n_i with the min. degree, and put into I

Select a node in A with least no of links with nodes in X

Iterating set I	Adjacent set A	X – the rest
1	2	3,4,5,6,7,8
1,2	3,4	5,6,7,8
1,2,3	4.5	6,7,8
1,2,3,4	5	5,6,7,8
1,2,3,4,5	6,7,8	

A "cluster" is found when |A| is min.

Queen Mary
University of London

Cluster(s) ⇔ community

- Finding "cuts" in the graph to define clusters.
- Satisfying the weak community definition by Radicchi et al. K_{in}(C_i)/K_{out}(C_i) > 1

17

Ranking boundary nodes

- Depends on the hierarchy and connectivity with neighbouring communities.
- Rank from the top level by a node's participation with neighbouring communities.

"Cut nodes"

Bridging communities and hence have strongly influence on the *flow* in a network.

Removal of cut nodes may result in isolated communities or splitting communities

Level 0 Level 1

Finding important nodes ...

- Degree
- Cut-nodes ranked by a node's participation with other communities, from the top hierarchy.
- Running-rank using cut-nodes but re-rank every time a node is removed

$$n_a = 1$$

$$n_b = 1$$

$$n_a = 2$$

$$n_b = 4$$

$$n_a = 8$$

$$n_{b} = 11$$

Effect on efficiency

Decrease in efficiency when 50% of the nodes are removed.

Solid - Degree

Dashed – cut-nodes

Dotted – Running rank

Effect on the size of the giant component

Decrease in efficiency when 50% of the nodes are removed.

Solid - Degree

Dashed – cut-nodes

Dotted – Running rank

Removing internal nodes....

Decrease in global and local efficiencies when 40% of the nodes are removed. Solid – Global efficiency Dashed – Average local efficiency

Conclusions

- Take the overall network structure into consideration when examining a node's significance.
- Network hierarchical and modular structure help define nodes in the boundary areas.
- Results have shown that cut-nodes do have substantial impact on network efficiency, sometime regardless of its degree.

Thank you!

Dr Athen Ma

Email: athen.ma@eecs.qmul.ac.uk

Homepage: http://www.eecs.qmul.ac.uk/~athen