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What is Learning?

Supervised Learning

Given data S = {(x1, y1), ..., (xl , yl)}, infer a function f such
that f (xi ) ≈ yi for all possible instances xi .

Unsupervised Learning

Given data S = {x1, ..., xl}, model the data. e.g:

Fit a probability distribution to the space of all possible
instances.
Map the instances to a low dimensional manifold in the
instance space, such that the mapped instance is close to the
original instance.

Semi-Supervised Learning

Given data S = {(x1, y1), ..., (xl , yl), xl+1, ..., xn}, infer a function
f such that f (xi ) ≈ yi for all possible instances xi . Utilises both
supervised and unsupervised methods.



What is Learning?

Batch Learning

Learner is given the data set S and then performs the learning
task

Online Learning

We are given an initial data set S.

Learning proceeds in rounds. On each round:
1 Learner is queried (with some instance).
2 Correct answer is given, which updates the data set S.

In this paper we focus on online, semi-supervised learning.
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Classification

Model

On each round:

Nature presents an instance.

Learner predicts the class.

Nature reveals the class.

Aim: Minimize mistakes

Classification

Instance:

Prediction: Bart Bart Lisa Maggie Maggie

Outcome: Bart Lisa Lisa Maggie Bart

Mistakes: 0 1 1 1 2



An Example Mistake Bound - The Halving Algorithm

We have a labelled line graph with n vertices:

Suppose a priori:

We know no labels

We know that the cutsize is at most 1.

Let H be the set of all 2n consistent classifiers:



An Example Mistake Bound - The Halving Algorithm
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Update: Remove inconsistent classifiers from H.
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An Example Mistake Bound - The Halving Algorithm

|H| is initially 2n.

When a mistake is made at least half the classifiers are
removed from H.

The correct classifier is never removed from H so we always
have |H| ≥ 1

.

Hence:
No more than log2(2n) mistakes made.
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Similarity

Model

On each round:

Nature presents an instance pair.

Learner predicts similarity of pair.

Nature reveals similarity.

Aim: Minimize mistakes

Similiarity

Instance:

Prediction: similar disim. disim. similar similar

Outcome: similar disim. similar similar disim.

Mistakes: 0 0 1 1 2



Connection Between Classification and Similarity

Notation

A concept y is a mapping from instances into K -classes.

BA(y) the maximal mistakes by algorithm A wrt concept y .

Theorem

Given classification algorithm C there exists similarity algorithm S
such that for any concept y :

BS(y) ≤ 5 BC (y) log2 K

Given similarity algorithm S there exists classification algorithm C
such that for any concept y :

BC (y) ≤ BS(y) + K



Problem

Construction requires exponential-time!



Recipe for a solution

Ingredients (basic)

1 Linear classifiers via “metric”-learning kernel [XNJR02,SSN04]

2 Online algs: Matrix Perceptron and Matrix Winnow [W07]

Ingredients (fancy) :
Aim: optimal mistake bounds or poly-log-time predictions

1 Prediction on a graph framework [CGVZ10,HLP09]

2 Expected mistake bound with random spanning trees

3 Linearization with path graph embedding

4 Reduced diameter and fast prediction with binary support tree

Results: Matrix winnow (optimality)
Matrix perceptron (speed)



Similarity prediction on a graph

• The graph is labeled by y : vertices→ {•, •, •}
• Instances are pairs of vertices, for example (v , w)

wv

Φ(y)= 3 (cut)

R(v , w)= 2 (eff. resistance)

ϕr (y)= 21
2 (eff. resistance-weighted cut)



Linear classification: Perceptron and Winnow
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We have a finite dimensional inner product space V.

Instances are vectors in V.

There exists a hyperplane H which classifies instances.

Goal: Learn H.



Linear classification: Perceptron and Winnow

Predict according to H
If mistake is made then H is updated according to the new
instance.
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Predict according to H
If mistake is made then H is updated according to the new
instance.



Similarity prediction via linear classification

Inner-Product Space

V is the space of n × n matrices with:

〈A, B〉 := Trace(ATB) (1)

Encoding

A pair of vertices (v , w) is encoded as the matrix:

√
L+(ev − ew )(ev − ew )T

√
L+

Graph Laplacian: L; Basis vector: ev



Similarity prediction via linear classification

Mistake bounds

MW ≤ O([Φ(y)RG ] log(n)) (Winnow)

MP ≤ O([Φ(y)RG ]2) (Perceptron)

Resistance diameter: RG ; Number of vertices: n



Graph approximation via a random BST

Construct: Random BST

1 Bounds ito resistance-weighted cut-size [E[ΦG ′
(y)] = ϕr

G (y)]

2 Intermediate step [ΦG ′′
(y) ≤ 2ΦG ′

(y)]

3 Enables polylog time [ΦG ′′′
(y) ≤ (log n)ΦG ′′

(y); RG ′′′
= log n]

4 Hence E[ΦG ′′′
(y)] ≤ 2ϕr

G (y) log n
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An optimal algorithm (Matrix Winnow + random BST)

Theorem

The mistakes of Winnow + random BST is bounded above ∀y:

E[M] ≤ O(ϕr (y) log3(n))

Direct implementation requires O(n3) time per round.



A fast algorithm (Matrix Perceptron + random BST)

Theorem

The mistakes of Perceptron + random BST is bounded ∀y by

E[M] ≤ O
(
ϕr (y)2 log4(n)

)

There exists an O(log2 n) time per round implementation

• An exponentially faster per-round prediction •



Fast perceptron prediction – sketch

Fast perceptron (O(log2 n)) per round

Receive: vertex instance pair (v , w)
Compute P path from v to w (blue fill)
Predict: ŷ = I[

∑
i,j∈P Fij > 4 log2 n]

Receive: “similarity” label yt (‘0’ is similar/‘1’ is dissimilar)
Compute f (circled numbers)
Determine S (bolded circles)
Extend f to S
Update: ∀i , j ∈ S, Fij ← Fij + (2yt − 1)(fi − fj)
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A question

What if the graph is unknown?



Unknown graph

Model: progressive graph disclosure

Nature presents a vertex pair & a path connecting the vertices

Learner predicts similarity of pair.

Nature reveals similarity.

Algorithm sketch
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Future directions

Weaken assumption: sim(a, b) & sim(b, c) =⇒ sim(a, c)

Structurally richer graph approximations with fast algorithms

Tight lower and upper bounds in the unknown graph setting
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Tight lower and upper bounds in the unknown graph setting
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