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Outline

General formalism for multiplex networks

Measures to characterise the multiplexity of a system

1 Basic node and link properties
2 Local properties (clustering)
3 Global properties (transitivity, reachability, centrality)

Validation of all measures on a genuine multi-layer dataset of Indonesian terrorists
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General formalism for multiplex networks

A multiplex is a system whose basic units are connected through a variety of different
relationships. Links of different kind are embedded in different layers.

Node index i = 1, . . . ,N

Layer index α = 1, . . . ,M

For each layer α:

adjacency matrix A[α] = {a[α]
ij }

node degree k
[α]
i =

∑
j a

[α]
ij∑

i k
[α]
i = 2K [α] K [α] is the size of layer α

For the multiplex:

vector of adjacency matrices A = {A[1], ...,A[M]}.

vector of degrees ki = (k
[1]
i , ..., k

[M]
i ).

Vectorial variables are necessary to store all the richness of multiplexes.
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General formalism: aggregated matrices

Aggregated topological network:

adjacency matrix A = {aij}:

aij =

{
1 if ∃ α : a

[α]
ij = 1

0 otherwise
(1)

node degree ki =
∑

j aij∑
i ki = 2K

Aggregated overlapping network:

adjacency matrix O = {oij}:

oij =
∑
α

a
[α]
ij edge overlap (2)

node degree oi =
∑

j oij =
∑
α k

[α]
i , oi ≥ ki∑

i oi = 2O

Scalar variables describing system’s multiplexity cannot disregard the layer index [α].

Generalisation to the case of weighted layers: a
[α]
ij → w

[α]
ij k

[α]
i → s

[α]
i oij → ow

ij
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The multi-layer network of Indonesian terrorists

78 nodes

911 edges representing 4 social relationships:

1 Trust (weighted edges)
2 Operations (weighted edges)
3 Communications
4 Businness (only few information)
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The multi-layer network of Indonesian terrorists

LAYER CODE Nact K S O Ow

MULTIPLEX M 78 623 / 911 1014

Trust T 70 259 293 / /
Operations O 68 437 506 / /

Communications C 74 200 200 / /
Businness B 13 15 15 / /

Figure : Coloured-edge representation of a subset of 10 nodes for the multiplex network of
Indonesian terrorist: green edges represent trust, red edges communications and blue edges
common operations.
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Basic node properties

A layer-by-layer exploration of node properties: the case of the degree distribution.

Different layers show different patterns.
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Basic node properties: cartography of a multiplex

Participation coefficient: Pi = 1−
∑M
α=1

(
k

[α]
i
oi

)2

1 Focused nodes 0 ≤ Pi ≤ 0.3

2 Mixed-pattern nodes 0.3 < Pi ≤ 0.6

3 Truly multiplex nodes Pi > 0.6

Z-score of the overlapping degree: zi (o) = oi−<o>
σo

1 Simple nodes −2 ≤ zi (o) ≤ 2

2 Hubs zi (o) > 2
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Basic node properties: cartography of a multiplex
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Edge overlap and social reinforcement

oij Percentage of edges (%)
1 46
2 27
3 23
4 4

Probability conditional overlap:

F (a
[α′]
ij |a

[α]
ij ) =

∑
ij a

[α′]
ij a

[α]
ij∑

ij a
[α]
ij

(3)
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Edge overlap and social reinforcement

F (a
[α′]
ij |a

[α]
ij ) → Fw(a

[α′]
ij |w

[α]
ij )

1.0 1.5 2.0 2.5 3.0

w
[T]
ij

0.0

0.2

0.4

0.6

0.8

1.0
F

w
(α
′ |w

[T
]

ij
)

α′ = O

α′ = C

α′ = B

The existence of strong connections in the Trust layer, which represents the strongest
relationships between two people, actually fosters the creation of links in other layers.
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Triads and triangles
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Clustering

Ci,1 =

∑
α

∑
α′ 6=α

∑
j 6=i,m 6=i (a

[α]
ij a

[α′]
jm a

[α]
mi )∑

α

∑
j 6=i,m 6=i (a

[α]
ij a

[α]
mi )

(4)

Ci,2 =

∑
α

∑
α′ 6=α

∑
α′′ 6=α,α′

∑
j 6=i,m 6=i (a

[α]
ij a

[α′′]
jm a

[α′]
mi )∑

α

∑
α′ 6=α

∑
j 6=i,m 6=i (a

[α]
ij a

[α′]
mi )

(5)
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Transitivity
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Clustering

Ci,1 and Ci,2 show different patterns of multi-clustering and are not correlated with oi .
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Transitivity and clustering

We call configuration model (CM) the set of multiplexes obtained from the original
system by randomising edges and keeping fixed the sequence of degree vectors
k1, k2, . . . , kN , i.e. keeping fixed the degree sequence at each layer α.

Variable Real data Randomised data
C1 0.26 0.17
C2 0.26 0.18
T1 0.21 0.15
T2 0.21 0.16

Measures of multi-clustering for real data are systematically higher than the ones
obtained for randomised data, where edge correlations are washed out by
randomisation
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Navigability: shortest paths and interdependence

The interdependence λi of node i is defined as:

λi =
∑
j 6=i

ψij

σij
(6)

where σij is the total number of shortest paths between i and j and ψij is the number
of interdependent shortest paths between node i and node j .

1 78
Rank

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ
i

λ
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Reachability: shortest paths and interdependence
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Centrality

For a duplex we can construct the following adjacency matrix:

M(b) = bA[1] + (1− b)A[2], M(b = 0.5) = O (7)

0.0 0.2 0.4 0.6 0.8 1.0
b

0.5

0.6

0.7

0.8

0.9

1.0
τ k

(E
i(
O

),
E
i(
M

))
T - O
T - C
O - C

The symmetry/asymmetry of the curves tell us about the interplay between the layers
in determining the centrality of the multi-layer system.
Both layers T and O dominate C in determining the centrality of the multiplex.
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Summary

We suggested a comprehensive formalism to deal with systems composed of
several layers

We also proposed a number of metrics to characterize multiplex systems with
respect to:

1 Node degree
2 Node participation to different layers
3 Edge overlap
4 Clustering
5 Transitivity
6 Reachability
7 Eigenvector centrality

8 You can find more in the paper
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