
Multi-layer

Massimiliano Zanin

networks:
Have we got the basics right?

functional



The story so far …



1998:
Birth of complex network theory



Analysis of the Air Transport network
10 The European Physical Journal Special Topics

Table 1. Example of different topological metrics, as reported in several research papers.
The asterisk in the Links column indicates that the number refers to the number of flights,
while in all the other cases the column reports the number of connections.

Country Period Nodes Links γ γB L Lrand C Crand Refs.

World 11/2000 3883 27051 1.0 0.9 4.4 — 0.62 0.049 [34]
World 11/2002 3880 18810 2.0 — 4.37 — — — [35,36]
US — 215 ∗116725 2.0 — 1.403 — 0.618 0.065 [37]
US 10-12/2005 272 6566 2.63 — 1.9 1.81 0.73 0.19 [38]
Austria — 134 9560 2.32 — — — 0.206 0.01 [22]
China — 128 1165 4.161 — 2.067 — 0.733 — [23]
China 28/11/2007–29/ 144 1018 — — 2.23 1.88 0.69 0.098 [39]

3/2008
India 12/1/2004 79 442 2.2 — 2.259 2.493 0.657 0.0731 [40]
India 12/2010 84 ∗13909 0.71 0.54 2.17 2.55 0.645 0.18 [41]
Italy 16/7-14/8/2005 42 — 1.6 0.4 1.987 3.74 0.10 0.17 [42]
Italy 11/2005 42 — 1.1 0.5 2.14 3.64 0.07 0.14 [42]
Italy 6/2005–5/2006 42 310 1.7 0.4 1.97 — 0.1 — [43]
Italy — 33 105 — — 1.92 — 0.418 — [44]
Spain — 35 123 — — 1.84 — 0.738 — [44]

outside Europe are disregarded). The right panel of Fig. 2 shows a zoom of the ex-
treme tail of the distribution and it is clear how few airports have direct connections
with a large number the destinations in the network, performing a hub function.
In the literature we surveyed, different methodologies have been used for creating

and analyzing flight networks. In Table 1 we report the values of classic complex
network metrics, for the air transport system of different countries and considering
an unweighted representation. The meaning of these metrics is reported below:

γ: in scale-free networks [45] the asymptotic behavior of the node degree distribution
has a functional form P (k > x) ∼ x−γ . It has been pointed out that the real
degree distribution of the worldwide flight network is a truncated power-law, i.e.,
it is asymptotically better explained by the function P (k > x) ∝ x−γf(x/km),
where f is an exponential truncation function. The values reported in Refs. [34,35]
correspond to the exponent γ.

γB : the betweenness of a node is a centrality measure quantifying how important is
a node for movements inside the network. Node betweenness is defined as the
proportion of shortest paths, among all possible origins and destinations, that
pass through a node [46]. The exponent γB is the exponent of a power law fit of
betweenness distribution. When the distribution of centrality is asymptotically a
power-law function, a high exponent γB indicates that few nodes are responsible
for the efficient routing in the network.

L and Lrand: L is the mean length of shortest paths between pairs of nodes of the
network, i.e.,

L =
1

n2

∑

i,j

di,j (1)

where i and j are two nodes of the network, n the number of nodes, and dij the
length of the shortest (topological) path between nodes i and j. The value of L
is usually compared with Lrand, that is the mean value obtained in different net-
works that have the same number of nodes and links, but a completely random
structure. These random networks are also called Erdös-Rényi graphs [47]. It is
worth noticing that the Table shows how L is always lower than the correspond-
ing Lrand, indicating, as expected, that air transport networks are engineered to
efficiently reduce the number of connections needed by passengers.
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Table 2. Topological properties of different weighted air networks.

Country Weigth β βb θ Refs.

Worldwide Available seats 1.5 0.8 0.5 [35,36,49]
US Number of passengers 1.8 — — [38]
India Number of flights 1.43 — — [40]
4 European airlines Number of flights (1.06− 1.18) — — [50]
China Number of flights — — 0.5 [23]
Europe Number of flights 1.39 — — [51]

C and Crand: the clustering coefficient C, and its randomized counterpart Crand,
measures the number of triangles that can be found in the network [6]. It assesses
the probability that two nodes, which are connected to a third node, also share
a direct connection. Similarly to Lrand, Crand corresponds to the mean clustering
coefficient of an ensemble of randomized networks.

The reader may easily notice how obtained values are very heterogeneous. For in-
stance, the exponent of the degree distribution γ varies from 1.0 up to 4.161, and
the clustering coefficient C from 0.07 to 0.738. This variability is mainly due to two
factors. Firstly, there are important differences in the method used in the construc-
tion of the networks, which are usually not fully explained in the papers. The time
window represented by the network may be not reported [22,23,44], and no details
are given about the types of flights considered (regular passengers flights, charters,
cargo flights). Secondly, most of the researches have investigated national networks,
covering few tens of airports. It is well known that some complex networks properties,
such as, for instance, the scale-free distribution of degrees, are meaningful and can
be correctly assessed only in large networks, where finite size effects are negligible
[48]. Moreover the degree of network heterogeneity is very different if one considers a
regional airport network or the worldwide network.

3.2 Weighted network analysis

As explained in Sect. 3.1, the analyses described above are based on unweighted
projections of the air transport system, that is only the existence of direct connec-
tions between pairs of nodes is taken into account. On the other hand, it can be
expected that the structure of frequencies of flights may unveil interesting informa-
tion, especially related with the main routes of movements chosen by passengers.
Table 2 shows the values of some metrics obtained for different weighted networks

[52]. When a link between two nodes i and j has a weight wij , it is possible to calculate
a weighted version of the degree of a node, called strength, as s(i) =

∑
j wij . Notice

that the variability observed in the metrics of the unweighted networks is amplified
in the weighted network, because several variables can be used to define the value of
wij . For example one can consider the number of flights, the number of offered seats,
or the number of passengers transported, obtaining different weighted networks.
The definition of the metrics shown of Table 2 is here reported:

β: the relation between the strength s (number of flights) of each node and its degree
k (number of connections) is typically well fitted by a power law s(k) ≈ kβ . This
relation unveils relevant information about how capacities are distributed through
the airport network.

βb: if one is interested in the assessment of the centrality of airports from the point
of view of passengers’ movements, it is possible to relate the strength of a node
with its betweenness, i.e., s(b) ≈ bβb .

M. Zanin and F. Lillo 
Modelling the air transport with complex networks: A short review 

Eur. Phys. J. Special Topics 215, 5–21 (2013)



The first problem:

the structure is not always explicit (or measurable)

the hardware structure may not be relevant

A classical example:



2000: Birth of functional representations



1. Extraction of time series

Birth of functional representations



2. Analysis of functional 
connectivity

Linear correlation 
synchronisation 

causality 
…

Birth of functional representations



Nature Reviews | Neuroscience

a  Healthy volunteers b  People with schizophrenia
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Assortativity
A measure of the tendency for 
nodes to be connected to 
other nodes of the same or 
similar degree.

Endophenotype
A quantifiable biological 
marker of the genetic risk for a 
neuropsychiatric disorder.

patient groups as well as to the differences in imag-
ing and analytic methods. Some of these differences 
may perhaps be resolved by studies combining network 
measurements on structural and functional neuroim-
aging data acquired on the same patients. It also seems 
likely that evidence for network abnormalities in other 
neuropsychiatric disorders and conditions (such as epi-
lepsy125–127, attention-deficit hyperactivity disorder128 or 
spinal cord injury129) will accumulate as the disorders 
are increasingly investigated from this perspective. 

Understanding the pathogenesis and treatment of brain 
disorders from a network perspective. Many psychiatric 
disorders are highly heritable and are likely to repre-
sent the clinical outcome of aberrations in the forma-
tion of large-scale networks in utero or during early 
post natal life. Measures of network topology may be 

worth investigating as intermediate phenotypes, or  
endophenotypes, that indicate the genetic risk for a 
neuro psychiatric disorder; however, network metrics 
have not yet been adopted for this purpose. A study of 
healthy twin pairs has shown that classical small-world 
metrics on brain functional networks derived from EEG 
data have high heritability130, a necessary prerequisite for 
their candidacy as disease endophenotypes. Another 
study of graph theoretical measures of anatomical net-
works derived from inter-regional correlations in corti-
cal-thickness MRI measurements on a sample of normal 
twins, singletons and singleton siblings of twins showed 
that genetically determined frontoparietal networks had 
small-world properties131. Network metrics are arguably 
more attractive as intermediate phenotypes than local 
measures of brain (dis)organization, because computa-
tional models of network development are often avail-
able to test mechanistic hypotheses for how an observed 
profile of anatomical or functional dysconnectivity in a 
mature network might have been generated by earlier 
developmental abnormalities24,132.

Another example of how empirical and computational 
approaches can be usefully combined is provided by stud-
ies that have ‘lesioned’ anatomical or functional network 
models — for example, by deleting nodes or connections 
— to explore how acute and focal damage could affect the 
overall performance of brain networks70,133,134. Networks 
can be lesioned by random deletion of nodes or edges, 
or by targeted attack on the highest-degree nodes in the 
network. The vulnerability of the network to damage is 
assessed by comparing its topological or dynamical behav-
iour after the lesioning to its intact behaviour. Different 
network topologies confer different vulnerabilities to the 
effects of random or targeted attack. For example, scale-
free networks are robust to random error but highly 
vulnerable to deletion of the network hubs. Brain func-
tional networks with an exponentially truncated power 
law degree distribution were found to be less vulnerable 
to attack than scale-free networks70. In an anatomically 
informed computational model, deletion of hub nodes 
produced widespread disruptions of functional connec-
tivity53,134 that were consistent with effects reported in 
focal human brain lesions135,136. Computational lesioning 
of network models was also used to explore the func-
tional consequences of a gradual and precisely specified 
disease process: the elimination of long-range projections 
and the sprouting of short-range connections in a model 
of epileptogenesis in the rat dentate gyrus137. The topol-
ogy of the normal or non-epileptic dentate gyrus became 
relatively over-connected and dynamically hyperexcitable 
as a result of cellular changes previously described in rela-
tion to temporal lobe epilepsy. Other studies of models 
of temporal lobe epilepsy have shown loss of small-world 
topology in cellular networks during hypersynchronized 
bursting138 and have shown that variation of small-world 
topological and synaptic properties of a computational 
model can cause transitions between normal, bursting 
and seizing behaviours139. 

It is also conceivable that network analysis can be 
used to further our understanding of the therapeutic 
effects of pharmacological or psychological therapies. 

Figure 3 | Disease-related disorganization of brain anatomical networks derived 
from structural MRI data. In both parts, the nodes (circles) represent cortical regions 
and the connections represent high correlation in grey matter density between nodes. 
The nodes are arranged vertically by degree and are separated horizontally for clarity of 
representation. The numbers indicate approximate Brodmann area, and the prime 
symbols ( ) denote left-sided regions. The clustering coefficient of each node, a measure 
of its local connectivity, is indicated by its size: nodes with high clustering are larger.  
a | The brain anatomical network of the healthy volunteers has a hierarchical 
organization characterized by low clustering of high-degree nodes24. b | The equivalent 
network constructed from MRI data on people with schizophrenia shows loss of this 
hierarchical organization — high-degree nodes are more often highly clustered. Figure is 
reproduced, with permission, from REF. 124  (2008) Society for Neuroscience.
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Ed Bullmore and Olaf Sporns 
Complex brain networks: graph theoretical analysis of structural and functional systems 

Nat. Rev. Neuroscience 10 (2009)



2010:

What about multi-layer structures?

We usually analyse the 
projected networks …

… but the real network is 
created by airlines
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Emergence of network features from multiplexity 
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Networks of explicit links

Functional networks Multi-layer structures

What about multi-layer functional networks?

Is the multi-layer structure of a functional network relevant? 
Can we disregard layers? 

Would the resulting dynamics be similar?



Data set available

ALL-FT+!
as provided by the PRISME group of EUROCONTROL 

!
All flights crossing the European airspace 

1st March - 31st December 2011 
!

> 10 million flights 
> 400 GB of data





Table S1: Main topological properties of the reconstructed networks. From left to right, the six columns
represent the following networks: the projection of the dynamics (network 1 of Fig. 1), the two projections
of the topology (2 and 3 of Fig. 1), and the first three layers (i.e. airlines, as in Fig. S1).

Projection of
dynamics (1)

Projection of
topology (2)

Projection of
topology (3)

Layer 1 Layer 2 Layer 3

Link density 0.05 0.05 0.54 0.05 0.05 0.05

Maximum
out degree

26 16 48 13 13 15

Degree-degree
correlation

-0.058 -0.077 -0.029 0.031 -0.088 0.094

Clustering
Coefficient

0.022 0.179 0.707 0.064 0.217 0.095

Efficiency 0.064 0.094 0.765 0.110 0.064 0.113

Size giant
component

2 17 48 16 14 18
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Figure S2: Reconstructed networks for the first three layers, corresponding to the three largest airlines
operating in Europe. Gray dashed lines represent physical connections (i.e. scheduled direct flights) between
pairs of airports, black solid lines functional connections. Each node is labeled with the corresponding ICAO
code of the airport; furthermore, its size (color) represents its out-degree centrality in the physical (functional)
network.

i, and ⟨·⟩ the average through time. Values of γ close
to 0 imply that the system is able to dissipate the de-
lays generated by the random part of Eqs. 1-3 (of the
main text); on the contrary, for γ > 0, a steady state
is not reached and delays constantly increase. Fig.

S3 reports the value of ln γ as a function of α and β -
the two delay multipliers, see Fig. 3 of the main text.
The single and multi-layer scenarios (respecitvely top
and bottom panels) present two distinct behaviors.
Specifically, the change from a steady state (γ ≈ 0)
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Dynamical model of delay propagation

Random walk on the physical network 
Delay of each agent defined as: (α, β) * Previous delay 

Random term 
Negative delays are eliminated



Dynamical model of delay propagation

Random walk on the physical network 
Delay of each agent defined as: (α, β) * Previous delay 

Random term 
Negative delays are deleted

Total delay generated by the system

Single layer representation Multi-layer representation

Estimation error



Comparing single vs. multi-layer dynamics
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Comparing single vs. multi-layer dynamics

Error of the same order of magnitude than the observable (total delay)



Why such difference?

The importance of key functional links is lost in the projection
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Distribution of links importance 
calculated as α-centrality over the row-normalised adjacency matrix



Have we got the basics right?

Disregarding the multi-layer structure results in an

erroneous assessment of the structure and dynamics of the system 

Wrong understanding of delay propagation

Other layers to be considered: aircraft, crews, etc.

One network does not fit all!
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