# Multi-layer functional networks:

# Have we got the basics right?

Massimiliano Zanin









### Analysis of the Air Transport network

| Country | Period                   | Nodes     | Links      | $\gamma$ | $\gamma_B$ | L       | $L_{rand}$ | C                  | $C_{rand}$      | Refs.    |
|---------|--------------------------|-----------|------------|----------|------------|---------|------------|--------------------|-----------------|----------|
| World   | 11/2000                  | 3883      | 27051      | 1.0      | 0.9        | 4.4     | _          | 0.62               | 0.049           | [34]     |
| World   | 11/2002                  | 3880      | 18810      | 2.0      |            | 4.37    |            |                    |                 | [35, 36] |
| US      |                          | 215       | *116725    | 2.0      |            | 1.403   |            | 0.618              | 0.065           | [37]     |
| US      | 10-12/2005               | 272       | 6566       | 2.63     |            | 1.9     | 1.81       | 0.73               | 0.19            | [38]     |
| Austria |                          | 134       | 9560       | 2.32     |            |         |            | 0.206              | 0.01            | [22]     |
| China   |                          | 128       | 1165       | 4.161    |            | 2.067   |            | 0.733              |                 | [23]     |
| China   | 28/11/2007-29/<br>3/2008 | 144       | 1018       |          |            | 2.23    | 1.88       | 0.69               | 0.098           | [39]     |
| India   | 12/1/2004                | 79        | 442        | 2.2      |            | 2.259   | 2.493      | 0.657              | 0.0731          | [40]     |
| India   | 12/2010                  | 84        | *13909     | 0.71     | 0.54       | 2.17    | 2.55       | 0.645              | 0.18            | [41]     |
| Italy   | 16/7-14/8/2005           | 42        |            | 1.6      | 0.4        | 1.987   | 3.74       | 0.10               | 0.17            | [42]     |
| Italy   | 11/2005                  | 42        |            | 1.1      | 0.5        | 2.14    | 3.64       | 0.07               | 0.14            | [42]     |
| Italy   | 6/2005 - 5/2006          | 42        | 310        | 1.7      | 0.4        | 1.97    |            | 0.1                |                 | [43]     |
| Italy   |                          | 33        | 105        |          |            | 1.92    |            | 0.418              |                 | [44]     |
| Spain   | _                        | 35        | 123        |          |            | 1.84    |            | 0.738              |                 | [44]     |
|         |                          |           |            |          |            |         |            |                    |                 |          |
| Country | 7                        | Weigth    |            |          | eta        |         | ß          | $\beta_b = \theta$ | Ref             | s.       |
| Worldw  | ide A                    | Available | e seats    |          | 1.5        |         | 0          | .8 0.              | 5 [ <b>35</b> , | [36, 49] |
| US      | I                        | Number    | of passer  | ngers    | 1.8        |         | _          |                    | - [38]          |          |
| India   | I                        | Number    | of flights | 5        | 1.43       |         | _          |                    | - [40]          |          |
| 4 Europ | ean airlines             | Number    | of flights |          | (1.06)     | 3 - 1.1 | 8) –       |                    | - [50]          |          |
| China   | I                        | Number    | of flights |          |            |         |            | - 0.               | 5 [23]          |          |
| Europe  | I                        | Number    | of flights | 6        | 1.39       |         | _          |                    | - [51]          |          |

M. Zanin and F. Lillo Modelling the air transport with complex networks: A short review Eur. Phys. J. Special Topics 215, 5–21 (2013)

## The first problem:

## the structure is not always explicit (or measurable)

the hardware structure may not be relevant

### A classical example:





### **Birth of functional representations**



### **Birth of functional representations**





**b** People with schizophrenia



Ed Bullmore and Olaf Sporns Complex brain networks: graph theoretical analysis of structural and functional systems Nat. Rev. Neuroscience 10 (2009)

Degree





A. Cardillo, J. Gómez-Gardeñes, M. Zanin *et al. Emergence of network features from multiplexity* Scientific Reports 2 (2013)



A. Cardillo, J. Gómez-Gardeñes, M. Zanin *et al. Emergence of network features from multiplexity* Scientific Reports 2 (2013)

#### The structure and dynamics of multilayer networks

S. Boccaletti<sup>a,b,\*</sup>, G. Bianconi<sup>c</sup>, R. Criado<sup>d,e</sup>, C.I. del Genio<sup>f,g,h</sup>, J. Gómez-Gardeñes<sup>i</sup>, M. Romance<sup>d,e</sup>, I. Sendiña-Nadal<sup>j,e</sup>, Z. Wang<sup>k,1</sup>, M. Zanin<sup>m,n</sup>

<sup>a</sup>CNR- Institute of Complex Systems, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy The Italian Embassy in Israel, 25 Hamered st., 68125 Tel Aviv, Israel <sup>c</sup>School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom <sup>d</sup>Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain <sup>e</sup>Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain <sup>f</sup>Warwick Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom <sup>9</sup>Centre for Complexity Science, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom <sup>h</sup> Warwick Infectious Disease Epidemiology Research (WIDER) Centre. University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom <sup>i</sup>Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain <sup>j</sup>Complex Systems Group, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain <sup>k</sup>Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SRA, China <sup>1</sup>Center for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex Systems (Hong Kong) and Institute of Computational and Theoretical Studies. Hong Kong Baptist University, Kowloon Tong, Hong Kong SRA, China <sup>m</sup>Innaxis Foundation & Research Institute, José Ortega y Gasset 20, 28006 Madrid, Spain <sup>n</sup>Faculdade de Ciências e Tecnologia, Departamento de Engenharia Electrotécnica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

#### Abstract

In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties

### arXiv:1407.0742

155 pages, excellent against insomnia



Data set available

### ALL-FT+

as provided by the PRISME group of EUROCONTROL

All flights crossing the European airspace 1st March - 31st December 2011

> 10 million flights> 400 GB of data



|                              | Projection of<br>dynamics (1) | Projection of<br>topology (2) | Projection of<br>topology (3) | Layer 1 | Layer 2 | Layer 3 |
|------------------------------|-------------------------------|-------------------------------|-------------------------------|---------|---------|---------|
| Link density                 | 0.05                          | 0.05                          | 0.54                          | 0.05    | 0.05    | 0.05    |
| Maximum<br>out degree        | 26                            | 16                            | 48                            | 13      | 13      | 15      |
| Degree-degree<br>correlation | -0.058                        | -0.077                        | -0.029                        | 0.031   | -0.088  | 0.094   |
| Clustering<br>Coefficient    | 0.022                         | 0.179                         | 0.707                         | 0.064   | 0.217   | 0.095   |
| Efficiency                   | 0.064                         | 0.094                         | 0.765                         | 0.110   | 0.064   | 0.113   |
| Size giant                   | ່ <u>າ</u>                    | 17                            | 10                            | 16      | 11      | 10      |







0,04

Airlines

Proj. dynamics

Airlines

### Dynamical model of delay propagation



Random walk on the physical network

Delay of each agent defined as:

(α, β) \* Previous delay
Random term
Negative delays are eliminated

### Dynamical model of delay propagation



### Comparing single vs. multi-layer dynamics





### Comparing single vs. multi-layer dynamics



Error of the same order of magnitude than the observable (total delay)

## Why such difference?

Distribution of links importance

calculated as a-centrality over the row-normalised adjacency matrix



The importance of key functional links is lost in the projection

Have we got the basics right?

Disregarding the multi-layer structure results in an erroneous assessment of the structure and dynamics of the system

Wrong understanding of delay propagation

Other *layers* to be considered: aircraft, crews, *etc.* 

One network does not fit all!

M. Zanin *Can we neglect the multi-layer structure of functional networks? In preparation* 

M. Zanin and F. Lillo *Modelling the air transport with complex networks: A short review* Eur. Phys. J. Special Topics 215, 5–21 (2013)

A. Cardillo, J. Gómez-Gardeñes, M. Zanin *et al. Emergence of network features from multiplexity* Scientific Reports 2 (2013)

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 314087

