Planar growth generates scale free networks.
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Motivation




Motivation

“What we would really like is some measure of the degree of
planarity of a network, a measure the could tell us, for example,
that the road network of a country is 99% planar...”

[Newman, 2010]



Motivation

o 24

" §

Bg. M ; DBe
in 1M 1M

Figure : Planar models have been used to investigate street networks
in [Barthélemy and Flammini, 2008] and [Masucci et al., 2009].



Motivation

Figure : A planar growth process. [Barthélemy, 2011]



The model

Planar Growth



The model

Figure : Begin with a small planar network.



The model

Figure : Grow the network by placing a node on the plane.



The model

Figure : Reject edges that cross existing ones.



The model

Figure : Add edges until the required degree m is reached.



The model
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Figure : Repeat until N nodes have been added.



Initial Resulis

Figure : A PG network at various stages of its growth.



Initial Resulis

Figure : Degree distribution for networks of order n = 10* and m = 1
(purple), 1.5 (olive), 2 (orange), 2.5 (pink) and 3 (blue).



Reference cases

o PG/planarity
e planarity is not enforced.
e PG/growth

e N nodes placed randomly during initialisation.
e Pairs of nodes chosen at random.
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Figure : Degree distributions for each case.



Reference cases
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Figure : Embeddings of each case.



Reference cases

Figure : Measure the angle between each pair.
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Figure : Angle distributions.




An intermediate model

Relaxed planarity



An intermediate model

e New parameter y € [0, 1]
¢ Allow edge crossings with probability x



An intermediate model
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Figure : Degree distributions for each case.



An intermediate model
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Figure : Assortativity (left) and clustering plotted against .



Two existing models

Apollonian Networks



Two existing models
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Figure : An Apollonian Network. [Andrade Jr et al., 2005]



Two existing models

Py

Figure : An Apollonian Network. [Andrade Jr et al., 2005]



Two existing models
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Figure : An Apollonian Network. [Andrade Jr et al., 2005]



Two existing models

Figure : An Apollonian Network. [Andrade Jr et al., 2005]



Two existing models

Random Apollonian Networks



Two existing models

Py

Figure : A Random Apollonian Network. [Zhou et al., 2005]



Two existing models
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Figure : A Random Apollonian Network. [Zhou et al., 2005]



Two existing models
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Figure : A Random Apollonian Network. [Zhou et al., 2005]



Two existing models
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Figure : A Random Apollonian Network. [Zhou et al., 2005]



Two existing models
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Figure : A Random Apollonian Network. [Zhou et al., 2005]



Apollonian Planar Growth

e Again, select at random from F, the set of all faces.
e Weight the selection by area, i.e.

a;
T =

Y g

jeF

e Place a node u.a.r. in the face and connect it to the
vertices.



Apollonian Planar Growth

Alternatively, you could just,
e pick, u.a.r., a location on the triangle
e Connect it to the vertices of the face containing the location



Apollonian Planar Growth

Alternatively, you could just,
e pick, u.a.r., a location on the triangle
e Connect it to the vertices of the face containing the location

In other words, Planar Growth with m = 3.



Apollonian Planar Growth
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Figure : Degree distribution of a network of order N = 5 x 10° grown
using Apollonian Planar Growth. Estimated power law exponent is
a=277.



Variable area weight

Add an exponent to the area weighting formula:

a/

3
Zaj

jeF

m=

For 0 < 8 <« 1 triangle selection is roughly uniform.
For 1 <« B < oo the largest triangle is preferred.



Variable area weight

Table : Estimated exponent of degree distribution for varying area
weighting exponent.

I3 Q

103 2.93
100 2.73
0 2.76

a - exponent of the degree distribution.
B - area weighting exponent.



Variable area weight

Apollonian Planar Growth with
Trisection



Variable area weight, 5 < 1
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Figure : Degree distribution of networks of order N = 10° grown using

Apollonian Planar Growth with 3 equal to 10-°5, blue; 10—, pink;
10~18, olive and 102, purple.



Variable area weight, 5 > 1
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Figure : Degree distribution of a network of order N = 10° grown
using Apollonian Planar Growth with 3 = 100. Points in red are the
degree distribution of an Apollonian network of the same size.



Variable area weight, 5 = oo
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Figure : Degree distribution of a network of order N = 265720 grown
using Apollonian Planar Growth with 5 = co. Points in red are the
degree distribution of an Apollonian network of the same size.
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Summary

e Power law degree distribution simply by maintaining
planarity.

¢ Nodes distributed uniformly in space.

e Generalisation of existing Apollonian networks.
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