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Travel Costs

How much does it cost to use a road?

Time is money

Length of road

Congestion

Examples of cost functions (x is flow):

Affine: f(x) = a+ bx

BPR function: f(x) = a+
(x
b

)4
Delay functions (queues).
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Two different minima

Wardrop’s first principle

Journey times on all used routes are equal and less than the
free-flow cost of unsused routes.

Wardrop’s second Principle

Average journey time is at minimum / System cost is at
minimum.

CT (x) =
∑
i

fi(xi)xi
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Conservation of flows

Origin nodes are sources.

Destination nodes are sinks.

Flow is conserved:

Ax = d

A is the directed incidence matrix.

di =


−q, if i is origin

q, if i is destination

0, otherwise

x1

x3

x2

n

x1 + x2 − x3 = 0
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Optimisation formulation

System optimal

Minimise
x

∑
i

fi(xi)xi

Subject to Ax = d

x � 0

User equilibrium

Minimise
x

∑
i

∫ xi

0
fi(s)ds

Subject to Ax = d

x � 0
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System Optimal User Equilibrium

xi xi

fifi
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System Optimal User Equilibrium

xi xiδx δx

fifi
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Pigou’s example

f1 = 1

f2 = x

x1 + x2 = 1
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System Optimal

f1 = 1

f2 = x

CT = 1 · (1/2) + 1/2 · (1/2)

x1 = 1/2

x2 = 1/2
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System Optimal

f1 = 1

f2 = x

CT = 3/4

x1 = 1/2

x2 = 1/2
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User equilibrium

f1 = 1

f2 = x

x1 = 0

x2 = 1
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User equilibrium

f1 = 1

f2 = x

CT = 1

x1 = 0

x2 = 1
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Price of anarchy

Ratio of selfish routing to
system optimal performance.

Price of anarchy

PoA =
CT (xUE)

CT (xSO)

f1 = 1

f2 = x

PoA =
4

3

Worst case is achieved!
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Price of anarchy

Depends on available routes.

It depends on the cost functions.

Simple networks can be worst-case.

Is tied to switches.
(Steven O’Hare PhD thesis)

So where does network structure come into play?
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Braess Network

Short but congestible

Short but congestible
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Braess Network

Long but uncongestible

Long but uncongestible
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Braess Network

f1 = 0.5 + x

f3 = 0.5 + x

f5 = 0.1 + 0.1x

f2 = 1 + 0.5x

f4 = 1 + 0.5x

Alonso Espinosa (UoB) 23th September 2016 21 / 35



Flow (Braess)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Demand

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fl
o
w

User Equilibrium

Inner flow (y3 )

Outer flow (y1 )

Alonso Espinosa (UoB) 23th September 2016 22 / 35



Cost (Braess)
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Price of anarchy and switches (Braess)

Effects of switching
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Parallel links (non-interacting routes)

...

x1

x2

xm

Activation demands:

qi = qi−1 + ∆ai−1

i−1∑
j=1

1

bj

Flows:

xi(q) = (q − q`)
1∑`

j=1
bi
bj

+

`−1∑
k=i

∆qk
1∑k

j=1
bi
bj
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The importance of switching

Interacting routes give us:

Non-monotonic flows.

Switches in active link set.

PoA changes due to switch lag.

Driving network to Optimal ⇐⇒ Inducing switches at SO levels
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More complex switching
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Altruistic vehicles

Introduce some altruistic vehicles:

da = εd

ds = (1− ε)d

Modification of cost functions:

fi(x
a + xs) = (ai + xabi) + bix

s = âi + bix
s
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s = âi + bix
s

Alonso Espinosa (UoB) 23th September 2016 28 / 35



A Stackelberg game

2-player game

Leader: Network manager (Altruistic vehicles)

Follower(s): selfish cohort of vehicles
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Bilevel optimisation formulation

Minimise
xa

CT (xa + xs)

Subject to

Minimise
xs

∑
i

∫ xi

0
fi(s)ds

Subject to Axa = (1− ε)d
Axs = εd

xa � 0

xs � 0
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Objective function

What should the altruistic vehicles optimise?

Total system cost.

SO amongst themselves.

What incentives are there?
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Back to Braess network

ε = 0
ε = 0.2
ε = 0.5
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PoA reduction

Epsilon

0.0 0.5 1.0
-0.01

0.00

0.01

0.02

0.03

0.04
A
ve

ra
g
e
 P

o
A

 r
e
d
u
ct

io
n

PoA reduction across all demand values

Alonso Espinosa (UoB) 23th September 2016 33 / 35



Conclusions

Switching is key.

Switches can be induced early using mixed assignment.

Can only modify costs of roads with altruistic flow (not directly controlled).

For small values of demand PoA can be held at 1.

Optimal percentage of altruistic vehicles has to be done externally.

Network analysis (centrality etc...) has to be done after assignment
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Thank You
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