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What is an Ultra-Dense Network?

Cellular networks densify over time: As traffic continues to grow
rapidly in the coming years, today’s largely macro cell networks will
evolve, becoming more tightly packed and eventually becoming ultra
dense.

(Picture source: BitvilleLearning).
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What is an Ultra-Dense Network?

Cells approach 10m of each other: An ultra-dense network (UDN)
is one with sites on every lamp post or with indoor sites placed within
10m of each other.

Key 5G concept By 2025 or 2030, Nokia expects UDNs to be
covering most urban indoor and outdoor areas with small cells
providing cell edge data rates of 100 Mbps to everyone.
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Interference

Key engineering challenges:

Dense networks suffer from interference: This constricts their
capacity by limiting the concurrency of transmissions (see e.g. Gupta
and Kumar 2000).

Beamforming is a key solution: Recently, directional antennas have
emerged as a promising technology due partly to their ability to
enhance this concurrency, quantified as spatial reuse ratio i.e. the
ratio between co-channel transmitter (T-T) and transmit-receiver
(T-R) distances (see e.g. Li et al. 2011).

A classic stochastic geometry task: Optimise use of the spatial resource.
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MST, Minimal Matchings and TSP

Three classic topics in geometric combinatorial optimisation.

Minimal Spanning Tree (MST)

With x = {x1, x2, . . . , xn} a finite set
of points in Rd for d ≥ 2, a minimal
spanning tree T of x is a connected
graph with vertex set x such that the
sum of the edges lengths of T is
minimal, i.e.∑

e∈T
|e| = min

G

∑
e∈G
|e|

where |xi − xj | is the Euclidean length
of the edge e, and the minimum is
over all connected graphs G .
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MST, Minimal Matchings and TSP

Minimal Matching

With x = {x1, x2, . . . , xn} a finite set
of points in Rd , and a matrix (dij) of
distances between them, find the
perfect matching between the points
(a set of unoriented links such that
each point belongs to one and only
one link), of shortest length. More
formally, if dij is the Euclidean
distance between nodes i and j , one
looks for a set of occupation numbers
nij ∈ {0, 1} such that

∑
j nij = 1

with
∑

i<j nijdij minimised.
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MST, Minimal Matchings and TSP

Travelling salesman tour

With x = {x1, x2, . . . , xn} a finite set
of points in Rd for d ≥ 2, and a
permutation σ of the points, such
that the first point under the
permutation is denoted σ(1), the
second σ(2), and so on, a shortest
tour though the points of x is a cycle
xσ(1), xσ(2), . . . , xσ(n) defined by σ, of
minimum Euclidean length.
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Scaling laws

Theorem

Beardwood, Halton and Hammersley (1959)

If Xi , 1 ≤ i ≤ ∞ are independent and identically distributed random
variables with bounded support in Rd , the the length Ln under the usual
Euclidean metric of the shortest path through the points {X1,X2, . . . ,Xn}
satisfies

Ln
n(d−1)/d

→ βTSP,d

∫
Rd

f (d−1)/d(x)dx (1)

almost surely, where f (x) is the density of the absolutely continuous part
of the distribution of the Xi , and βTSP,d is a positive constant that
depends on d but not on the distribution of the Xi .
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Scaling laws

Theorem

Steele (1989). If Xi , 1 ≤ i ≤ ∞ are independent and identically distributed with
compactly supported density f , and 0 < α < d,

n−(d−α)/d
∑
e∈T

|e|α → γMST ,α,d

∫
Rd

f (d−α)/d(x)dx (2)

almost surely, where the positive constant γMST ,α,d depends only on α and d.

Theorem

Ajtai, Komlos and Tusnady (1984). If Xi and Yi are independent and
uniformly distributed in R2 for 1 ≤ i ≤ n, there are constants K1 and K2 such that

K1

√
n log n ≤ Mn = min

σ

n∑
i=1

|Xi − Yσ(i)| ≤ K2

√
n log n (3)

with probability one as n→∞.
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Data Capacity Application

Example

For N ∈ N, consider the binomial point process X2N ⊂ [0, 1]d of 2N
points. Form a perfect matching of the points, denoted M.

Call the Euclidean lengths of these edges d1, d2, . . . , dN . For η > 0,

we then assign each edge its own data capacity Ci = log2

(
1 + d−ηi

)
,

based on a power law propagation model where signal power
Pi = Cd−ηi taking η for the path loss exponent, and C a constant.

For each matching, we therefore have a length LM =
∑N

i=1 di and a
data capacity

CM =:
N∑
i=1

log2(1 + d−ηi ). (4)
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Data Capacity Example

Example

Order of Capacity: Given the capacity of a wireless link over a distance
di is given by C (di ) = log2(1 + d−ηi ), and that there exists a perfect
matching of the points of X2N where the Euclidean lengths of the edges in
the matching are each of order N−1/d , the one-hop throughput capacity is
O (logN).
Proof: We have that LM is of order N1−1/d , since there are N edges each
with length of order N−1/d . Wireless links have a corresponding limiting
capacity of order Ci = O

(
log2

(
1 + Nη/d

))
. Since N links can transmit

simultaneously, the one-hop throughput capacity of the network is

O

(
1

N

N∑
i=1

log2

(
1 + Nη/d

))
= O (N logN) . (5)
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Data Capacity Example

Example

The interpoint distances of the point process are O(N−1/d). The
capacity CM =

∑N
i=1 log2(1 + d−ηi ) and therefore

ECM = O
(
N log

(
1 + N−η/d

))
= O (N logN)

so rescale and study C ′M = (N logN)−1CM. In other words, with the
rescaling d ′i = N1/ddi we look at

C ′Mopt
= lim

N→∞
max
π

1

N

N∑
i=1

log2

(
1 + d ′−ηi

)
(6)

assuming a permutation of maximum capacity is arranged. We conjecture
that this approaches a limit C ′Mopt

→ γMM,d ,η which depends only on d

and η. Also, due to “self-averaging”, C ′Mopt
→ EC ′Mopt

as n→∞.
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Data Capacity Example

Example

Lower Bound: Given the capacity of a wireless link over a Euclidean
distance di is given by C (di ) = log2(1 + d−ηi ), and that there exists a
perfect matching on 2N points in the unit hypercube of lengths
d1, d2, . . . , dN , whatever matching is chosen will imply a per-node capacity
which satisfies

1

N

N∑
i=1

log2(1 + d−ηi ) ≥ log2

(
1 +

(∑N
i=1 di
N

)−η)
(7)

Proof: Taking Λ ≥ 0, the maximum value of the product
∏N

i=1 di under

the condition
∑N

i=1 di = Λ is obtained when di = dj for all i , j . Thus∑N
i=1 log2(1 + d−ηi ) = log2

(∏N
i=1

(
1 + d−ηi

))
when all edges are of equal

length, given η > 0, and the capacity will be minimised.
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Random Assignment Problem

Now: fit a mean field model to the geometrically constrained Euclidean
matching problem (monopartite case)

Theorem

Mézard and Parisi (1988). If Xi are independent and uniformly distributed
points lying within a bounded region of R2, but we approximate the
inter-point distances d1, d2, . . . , dn as independent exponential random
variables δ1, δ2, . . . , δn with unit mean, then

E

[
min
σ

n∑
i=1

δi

]
→ ζ(2)

2π
(8)

as n→∞, where ζ is the Riemann zeta function. We use the exponential
distribution because it is easier to work with, but the results apply to δ
with any distribution which is strictly positive at zero, since they only need
to agree at very short lengths di ↓ 0.

Alexander Kartun-Giles (QMUL) Euclidean Matchings MoN16 2017 19 / 26



Random Assignment Problem

Now: fit a mean field model to the geometrically constrained Euclidean
matching problem (bipartite case).

Theorem

Aldous (2000). If Xi and Yi are independent and uniformly distributed in a
bounded region of R2, but we approximate the inter-point distances
d1, d2, . . . , dn as independent exponential random variables δ1, δ2, . . . , δn
with unit mean, then

E

[
min
σ

n∑
i=1

δi ,σ(i)

]
→ π2

6
= ζ(2) (9)

as n→∞. This is the zeta(2) limit in the random assignment
problem. We use the exponential distribution because it is easier to use,
but the results apply to δ with any distribution which is strictly positive at
zero, since they only need to agree at very short lengths di ↓ 0.
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Data Capacity Example

According to Parisi (2008)

Boltzmann statistical mechanics can be considered an example of a
successful reductionistic program in the sense that it gives an
microscopic derivation of the presence of emergent (collective)
behaviour of a system which has many variables. This phenomenon is
known as “phase transition”.

If the different phases are separated by a first order transition, just at
the phase transition point a very interesting phenomenon is present:
phase coexistence. This usually happens if we tune one parameter:
the gas liquid coexistence is present on a line in the pressure-volume
plane, while the liquid-gas-solid triple point is just a point in this
plane. This behaviour is summarised by the Gibbs rule which states
that, in absence of symmetries, we have to tune n parameters in order
to have the coexistence of n + 1 phases.
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Definition of a Complex System

The Gibbs rule is appropriate for many systems, however in the case
of complex systems we have that the opposite situation is valid: the
number of phases is very large (infinite) for a generic choice of
parameters. This last property may be taken as a definition of a
complex system.

This is useful when you’re able to control the microscopic details of
the ground state (states of maximum data capacity), since one at
least has a choice of configurations which satisfy a capacity bound.

Key question: Are all these “phases” (in our case, Euclidean
matchings) very similar? In the random assignment problem, they all
are. This is called the AEU property (Asymptotic Essential
Uniqueness). Aldous 2000: AEU asserts that every almost-optimal
matching coincides with the optimal matching except on a small pro-
portion of edges.
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Definition of a Complex System

Studying AEU is interesting for two reasons, again Aldous (2000):

First, it can be defined for many optimisation over random data
problems, providing a theoretical classification of such problems (AEU
either holds or fails in each problem) somewhat in the spirit of
computational complexity theory.

Second, in the statistical physics of disordered systems it has been
suggested that the minima of the Hamiltonian should typically have
an “ultrametric” structure, suggesting that in the associated
optimisation problem the AEU property should fail. Since the random
assignment problem (studied here as a toy model of ultra-dense
networks) has qualitatively different behaviour than that predicted for
more realistic models, such as the Euclidean matching problem with
correlated edge weights.

Open question: does the monopartite or bipartite Euclidean matching
problem fail the AEU property? Very difficult proof.
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Multihop transport

Augmenting paths (dashed line, red, right panel), switch between ”highly orthogonal”
matchings, allowing information to move between more than a single device pair. These
updates form a chain of matchings. See e.g. The switch chain of Diaconis, Graham and
Holmes (2001), and Dyer, Jerrum and Müller (2015).
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Conclusions

Conclusions:

1 Euclidean matching theory provides a fascinating framework for both
ultra-dense and D2D communication.

2 The multiple-valleys associated with complex systems here correspond
to multiple orthogonal maximum capacity matchings. Determining
the communication theory of this AEU property is an open problem.

Outlook: Can someone understand the role of the AEU property in
communication networks? Does it have any specific uses?

Thank you.
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