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Outline

1 A spatial network model: the random geometric graph (RGG).

2 The spectral density of the adjacency matrix and its peaks

3 Random matrix theory and correlations in the spectrum.

Dettmann, Georgiou, Knight RGG



Spatially embedded networks

EPSRC-funded project investigating spatial networks with
application to wireless communications

Led by Justin Coon (Oxford) and CPD (Bristol).

Find out more : www.eng.ox.ac.uk/sen/
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Networks

A network consists of a set of nodes joined by edges.

Model for many types of complex system.

Nodes: People, computers, stations, neurons...

Edges: Relationships, contact, trips, synapses...
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Spatial networks
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Random geometric graph (RGG)

Nodes are distributed uniformly at random.
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Random geometric graph

Nodes are equipped with a connection radius.
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Random geometric graph

Edges are made when nodes are within connection range.
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RGG

We study RGGs with periodic boundary conditions.

RGG with N = 103 and r = 0.09375 on the torus.
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Adjacency matrix

The zero-one, N ×N adjacency matrix A has entries aij = 1 if
there is a connection between nodes i and j , zero otherwise.

A real and symmetric, its spectrum consists of real
eigenvalues λi , i = 1, ..,N with λ1 ≤ λ2 ≤ ... ≤ λN .

Dettmann, Georgiou, Knight RGG



Ensemble-averaged adjacency spectral density.

N = 103. (a): r = 0.09375, mean degree 28 and connected.
(b): r = 0.3, mean degree 283.

Clear peak at −1 for both r values.
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Peaks in adjacency spectrum

Peaks are found in many real-world networks.

Spectral density of the adjacency matrix of the Western
States Power Grid of the United States.

Peaks not common in other random graph models.
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Symmetric motifs

A network motif containing
symmetric nodes, gives rise to
eigenvalue multiplicities.

Subgraph whose vertices are
invariant under permutation.

When the vertices are connected
Type-I orbits.

When disconnected Type-II
orbits

Network redundancy, nodes
with identical roles.

Eigenvectors localise on these
symmetric nodes.

Type-I

Type-II
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Symmetry in the adjacency matrix

Consider two symmetric nodes n1 and n2 connected (type-I)
with adjacency matrix

0 1 ...
1 0 ...

1 1
0 0
: :




1
−1
0
0
:

 = −1


1
−1
0
0
:


If n1, n2 are not connected by an edge (type-II), get
eigenvalue 0.
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Type-I symmetry
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Type-II symmetry
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Symmetry probabilities by dimension
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Minimal distance of two nodes

There are of order N2 internode distances. We can show using the
Chen-Stein method that the smallest distance smin ∼ CDN

−2/D for
some constant CD .

We can then find the probability that the region around this closest
pair, Nex , is empty, leading to a Type-I symmetry.
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Limits

N →∞ such that...
r is constant: Intensive limit
r = CN−1/D and mean degree constant: Thermodynamic limit
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D=1

P(N(Nex) = 0) =
(

1− 2C1
N2

)N−2
→ 1

This holds in either the intensive limit (r const) or the
thermodynamic limit: Lots of symmetric motifs.
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D=2

P(N(Nex) = 0) =

(
1− 4r2 sin−1

(
C2
2rN

)
− 2C2

N

√
r2 − C2

2
4N2

)N−2

Intensive limit: P(N(Nex) = 0)→ e−4C2r

Thermodynamic limit: P(N(Nex) = 0)→ 1
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D=3

P(N(Nex) = 0) =
(

1− 2πr2C3N
− 2

3 + π
6C3N

−2
)N−2

Intensive limit: P(N(Nex) = 0)→ 0
Thermodynamic limit: P(N(Nex) = 0)→ 1
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Spectral density

What about the rest of the spectral density?

How does it compare with non-spatial random networks?
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Random matrix theory of complex networks

Use ideas from RMT to study complex networks.

Random networks (ER)N = 2000, pedge = 0.01, 〈d〉 = 20.

Scale-free (BA) N = 2000, 〈d〉 = 20.

Small-world (WS) N = 2000, 〈d〉 = 20, prewire = 0.005

Find universality in the statistics (Bandyopadhyay, Jalan ′07,
Mendez-Bermudez et al ′15). What about RGGs?
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Random matrix theory background

Gaussian Orthogonal Ensemble (GOE): Real, symmetric
random matrices whose elements are Gaussian distributed rvs.

For GOE the nearest neighbour spacing distribution (NNSD)
P(s) is given by the Wigner-Dyson formula

P(s) ≈ π

2
se−

πs2

4

No correlation P(s) is Poisson distribution

P(s) = e−s

Interpolating between these is the (empirical) Brody
distribution.

Pβ(s) = (β + 1)αsβe−αs
β+1

α =

(
Γ(β + 2)

Γ(β + 1)

)β+1

Γ() Gamma function. β = 0 Poisson, β = 1 Wigner-Dyson.
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Complex networks.
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Analytical results

L. Erdős, A. Knowles, H.-T. Yau, J. Yin (2012,2013)

Local semi-circle law, was proven for E-R graphs under the
restriction pN →∞ (with at least logarithmic speed in N)

This used to prove the presence of GOE statistics in the level
spacings of E-R graphs.
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Applications

A. Rai, A. V. Menon, and S. Jalan (2014)

RMT framework used to differentiate between cancerous and
healthy protein networks.

Nodes are proteins, edges are interactions.
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Unfolding Eigenvalues

To analyse the spectrum we need to unfold the eigenvalues.

Unfolding removes effects due to spectral density.

Spectral function which for a given energy E is defined as

S(E ) =
N∑
i=1

δ(E − λi )
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Unfolding Eigenvalues

Cumulative spectral function counts how many ≤ E

η(E ) =

∫ E

−∞
S(x)dx =

N∑
i=1

Θ(E − λi )

Unfolding defined via cumulative mean spectral function

λi = 〈η(E )〉|E=λi

si = λi+1 − λi . P(s) is the distribution of the si . Nearest
neighbour spacing distribution NNSD. 〈si 〉 = 1.
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Unfolding Eigenvalues

Cumulative mean spectral function (blue). Ensemble of
N = 103 RGGs, r = 0.09375. Cumulative spectral density of
single RGG (red).
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NNSD

P(s) from ensemble of N = 103 RGGs r = 0.09375 (a). Note
the peak at zero.In (b) we compare with GOE statistics.
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Brody distribution

The difference between NNSD and GOE for r = 0.09375 (a)
and r = 0.3 (b) (red dots). Also difference between GOE and
the Brody distribution. Fit value of β = 0.941 (a) and
β = 0.955 (b) (black lines).
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nNNSD

Next nearest neighbour spacing distribution.

s i2 = (λi+2 − λi )/2, P(s2) their distribution.

nNNSD of GOE is given by the NNSD of Gaussian symplectic
ensemble matrices (GSE)

P(s2) ≈ 218

36π3
s42e
− 64

9π
s22

Result: As for NNSD, very close to GOE for non-spatial
random networks and RGG.
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Spectral rigidity

∆3 statistic,(Dyson Mehta 1963), which measures long range
correlation over distance L.

∆3(L, x) measures the least-square deviation of the unfolded
spectral staircase function η to the line of best fit over the
interval [x , x + L].

∆3(L, x) =
1

L
min
A,B

∫ x+L

x

(
η(λ)− Aλ− B

)2
dλ.

η counts how many unfolded eigenvalues there are less than or
equal to a given value

η(E ) =
N∑
i=1

Θ(E − λi ).

The average over non-intersecting intervals of length L 〈...〉x
is then the spectral rigidity ∆3(L).

〈∆3(L, x)〉x = ∆3(L).
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Spectral rigidity

Full correlation, equal spacings, picket fence spectrum, no L
dependence.

∆3(L) =
1

12
.

Uncorrelated, Poisson statistics, linear dependence on L

∆3(L) =
L

15
.

GOE statistics, logarithmic dependence on L. For large L

∆3(L) ' 1

π2

(
ln(2πL) + γ − 5

4
− π2

8

)
,

to order 1/L, γ is Euler’s constant.
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Evaluating ∆3

Analytically evaluate ∆3(L, x) (Bohigas Giannoni 1975 ) for
experimentally obtained sequence.

Centre interval [x , x + L] at the origin. Transform n unfolded
eigenvalues in the interval λi , λi+1, ..., λi+n−1

λ̂j = λi−1+j −
(
x +

L

2

)
,

After transformation we can use

∆3(L, x) =
n2

16
− 1

L2

 n∑
j=1

λ̂j

2

+
3n

2L2

 n∑
j=1

λ̂2j


− 3

L4

 n∑
j=1

λ̂2j

2

+
1

L

 n∑
j=1

(n − 2j + 1)λ̂j

 .
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Spectral rigidity

Spectral rigidity of 103 node RGGs.
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Interpretation

RGGs follow GOE statistics up to some value L0 and then
deviate towards Poisson statistics.

L0 has been related to community structure (Jalan 2009) and
randomness of connections (Jalan and Bandyopadhyay 2009),
for example rewiring probability in regular networks.
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Summary

We used RMT statistics to study the adjacency spectrum in
RGGs.

Short range correlations: same universality class (GOE) as
non-spatial complex networks.

Long range correlations: deviations towards Poisson.

Future: Different connection functions, continuum limit
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Further reading

C. P. Dettmann, O. Georgiou and G. Knight, Spectral
statistics of random geometric graphs, EPL 118, 18003
(2017).

C. P. Dettmann and G. Knight, Symmetric motifs in random
geometric graphs, J. Complex Networks, 6, 95-105 (2018).
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