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Simple Contagion
Spreading of infectious diseases

M. Barthélemy et al. J. Theor. Biol. (2005)
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Social Contagion
Diffusion of information, behaviours, rumours, fads, beliefs, norms…

D. Centola & M. Macy,  Americ. J. Sociol. (2007); N. O. Todas & K. Lerman, Sci. Rep. (2014); D. Guilbeault et al., Springer (2018)

‣ Peer pressure
‣ Social influence
‣ Complex individual response to 

repeated exposures 



Complex Contagion

Multiple sources of
activation are required
for a transmission

Social contagion

D. Centola & M. Macy,  Americ. J. Sociol. (2007); N. O. Todas & K. Lerman, Sci. Rep. (2014); D. Guilbeault et al., Springer (2018)
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Network representation
of the social structure Simplicial complex

SIMPLicial ContAGION
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A simplicial complex      on a given set of vertices     , with               , is a collection
of simples with the extra requirement that if a simplex           , then all the
sub-simplices           built from the subset of    are also contained in     .

𝒦 𝒱 |𝒱 | = N
σ ∈ 𝒦

ν ⊂ σ σ 𝒦



Simplicial complex
A simplicial complex      on a given set of vertices     , with               , is a collection
of simples with the extra requirement that if a simplex           , then all the
sub-simplices           built from the subset of    are also contained in     .

𝒦 𝒱 |𝒱 | = N
σ ∈ 𝒦

ν ⊂ σ σ 𝒦
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Sorry Alain!

Simplicial complex
Interaction: co-authorship



Simplicial complexes
Not a new idea

Renewed interest among the complex systems community



Simplicial complexes
Describing the architecture of complex networks



Simplicial complexes
Describing the architecture of functional and structural brain networks



Simplicial complexes
Describing the architecture of semantic and co-authorship networks



The Simplicial Contagion Model

0-simplex

1-simplex

2-simplex

3-s
imp

lex

d-dimensional 

group interactions

Social structure:

simplicial complex

b0-simplex
1-simplex

2-simplex

3-simplex

d-dimensional 
group interactions

Social structure:
simplicial complex

b



+ =

1-simplices
(links)

2-simplices
(triangles)

Infected

Susceptible

 

Simplicial contagion

In
fe
ct
io
n

R
ec
ov
er
y

c d e

f g h

c d e

i

SIMPLicial ContAGION
The Model (D=2)



+ =

1-simplices
(links)

2-simplices
(triangles)

Infected

Susceptible

 

Simplicial contagion

In
fe
ct
io
n

R
ec
ov
er
y

c d e

f g h

c d e

i

SIMPLicial ContAGION
The Model (D=2)



+ =

1-simplices
(links)

2-simplices
(triangles)

Infected

Susceptible

 

Simplicial contagion

In
fe
ct
io
n

R
ec
ov
er
y

c d e

f g h

c d e

i

SIMPLicial ContAGION
The Model (D=2)



The Model (D=2)

Infected

Susceptible

 

Simplicial contagion

In
fe
ct
io
n

R
ec
ov
er
y

c d e

f g h

c d e

i

SIMPLicial ContAGION



The Model (D=2)

Infected

Susceptible

 

Simplicial contagion

In
fe
ct
io
n

R
ec
ov
er
y

c d e

f g h

c d e

i

SIMPLicial ContAGION

dynamical state variable

xi(t) ∈ {0,1}
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kw : generalised (simplicial) degree

⟨k1⟩ = ⟨k⟩
⟨k2⟩ = ⟨kΔ⟩

O. T. Courtney & G. Bianconi, PRE (2016)
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dynamical state variable

xi(t) ∈ {0,1}

λ = β⟨k⟩/µ
λ∆ = β∆⟨k∆⟩/µ

control parameters
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parameter
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Empirical Social Structures



Gathering data
The SocioPatterns collaboration
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Gathering data

J. Stehle et al. PLoS One (2011)

The SocioPatterns collaboration

HospitalPrimary school



Real world simplicial complexes
High-resolution proximity data
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M. Génois and A. Barrat, EPJ Data Science (2018)
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Real world simplicial complexes
High-resolution proximity data

time

M. Génois and A. Barrat, EPJ Data Science (2018)
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High-resolution proximity data
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M. Génois and A. Barrat, EPJ Data Science (2018)

Real world simplicial complexes
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Real world simplicial complexes
High-resolution proximity data

Simplicial Configuration Model

Processed
Simplicial
Complex

“Augmented”
Simplicial
Complex

To reduce finite size effects

Same statistical properties 
of the input complex but of 

significantly  larger size

Duplication of the lists of 
sizes of the maximal 

simplifies and simplicial 
degrees of nodes
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Generalised degree distributions
Empirical simplicial complexes
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ER-like Random Simplicial Complexes

• Set of N vertices (0-simplices)

• Set of probabilities {p1, ... , pk , ... , pD}, pk ∈ [0, 1]

⟨k⟩ ⟨k∆⟩
(N, p1, p2) (i , j) (i , j , k ) p2 ≡ p∆
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Generalised degree distribution
RSC Model
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Mean Field Approach



Mean Field approach
Homogeneous mixing hypothesis

‣ All individuals are the same 
and behave equally

‣ Same number of contacts: 
network of contacts has very 
small degree fluctuations

‣ Timescale of infection faster 
than demographics (closed 
population)
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Mean Field approach

Set of infection probabilities                                         

Temporal evolution of the density of infected nodes        :

loss of infectiousness new infections

new infections
from 1-simplices

D=2 loss of infectiousness

new infections
from 2-simplices

D
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‣ Future work:

๏ Simplagion on more general simplicial complexes - HMF
๏ Extension to other dynamical processes

‣ Considering high-order interactions in social contagion processes
‣ Social structure modelled as a simplicial complex
‣ Contagion occurs in group interactions (with different transmission rates)

‣ Numerical simulations on both empirical and synthetic simplicial complexes
‣ Discontinuous transition
‣ Dependence on the size of the seed (critical mass)

‣ The mean field approach correctly captures:
‣ Position of the threshold
‣ Nature o the transition   
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Actually…

‣ Future work: ๏ Simplagion on more general simplicial complexes - HMF

๏ Inference from structural + dynamical data
๏ Extension to other dynamical processes - Simplicial Kuramoto model?
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Simplagion on RSC
Size effects



Simplagion on empirical simplicial complexes
Without data augmentation


