
Predicting Switching Graph Labelings with

Cluster Specialists

MoN18: Eighteenth Mathematics of Networks Meeting

James Robinson (joint work with Mark Herbster)

8 April 2019

Department of Computer Science

University College London

1



Outline

Introduction

Predicting Switching Graph Labelings

Cluster Specialists

Experiments

Conclusion

2



Introduction



Introduction

• Graph prediction is a foundational problem in machine learning

• Many flavours/settings (node classification, edge

classification, clustering)

• Today: Node classification in the online learning setting

(sequential prediction)

• Want to develop algorithms with performance guarantees
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Predicting Switching Graph

Labelings



Predicting Graph Labelings Online

• n-vertex Graph G = (V ,E),

V = {1, . . . , n}

• A labeling is a function u : V 7→ {−1, 1}

• Online learning protocol:

For t = 1, . . . ,T do:

1. Nature selects a vertex it ∈ V

2.

3.

4.

•
•
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Predicting Graph Labelings Online

• n-vertex Graph G = (V ,E),

V = {1, . . . , n}

• A labeling is a function u : V 7→ {−1, 1}

• Online learning protocol:

For t = 1, . . . ,T do:

1. Nature selects a vertex it ∈ V

2. Learner predicts ŷt ∈ {−1, 1}
3. Nature reveals label ut(it) ∈ {−1, 1}
4. Learner incurs loss mt = [ut(it)6=ŷt ]

• No statistical assumptions are made!

Nature could be adversarial

• Performance guarantees hold in the worst

case
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Switching Graph Labelings

Sequence of labelings u1,u2, . . . ,uT s.t. |{t : ut 6= ut+1}| = K

t → t = 1 . . . . . . t = 7 . . . . . . t = 20 . . .

The learner doesn’t know when switches occur

Assume K is ‘small’
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Objectives

• Minimize the number of mistakes

M =
T∑

t=1

mt =
T∑

t=1

[ut(it) 6= ŷt ]

• Provide good mistake bound guarantees for switching :

M ≤ f (complexity(u1, . . . ,uT ),K , structure(G))

• Algorithms should be fast (online predictions)
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complexity(u1, . . . ,uT ) - Cut-size φ

We assume that a graph G consists of tightly-connected clusters, with loose

inter-cluster connections. Nodes in a cluster (mostly) share the same label.

A labeling u : V 7→ {−1, 1} induces a cut φG(u) =
∑

(i,j)∈E
[u(i) 6= u(j)]

φG(u) = 8

Static mistake bounds typically scale linearly with φG(u) - sensitive!

• [HLP08] - O
(
φG(u) log n

φG (u)
+ φG(u)

)
• [HP06] - O (φG(u)RG) , RG = f (structure(G))
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complexity(u1, . . . ,uT ) - Effective Resistance ri ,j

Define ri ,j to be the effective resistance between nodes i and j

when G is a network of unit resistors (edges)

x x x x

x

1 1
1 1

ri ,j is a measure of connectivity - effective resistance between two

nodes decreases with increased connectivity

Definition
Define the resistance-weighted cut-size to be:

φr (u) =
∑

(i ,j)∈E

ri ,j [u(i) 6= u(j)]
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complexity(u1, . . . ,uT ) - Resistance-weighted cut-size φr

• Two m-cliques with ` < m edges between them

• For all vertices i , j ∈ V , we have ri ,j ≤ Θ( 1
` )

• Hence,

φ(u) =
∑

(i ,j)∈E

[u(i) 6= u(j)] = `

φr (u) =
∑

(i ,j)∈E

ri ,j [u(i) 6= u(j)] ≤ Θ(1)

• φr (u) is robust!
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Random Spanning Tree - Resistance weighted cut-size

How to exploit φr (u)?

Expected cut-size of a random spanning tree generated uniformly at random

([CBGV09]):

E [φT (u)] =
∑

(i,j)∈E

P((i , j) ∈ ET ) [u(i) 6= u(j)]

=
∑

(i,j)∈E

ri,j [u(i) 6= u(j)]

= φr (u)

Mistake bounds in terms of φ(u) become expected mistake bounds in terms of

φr (u)!
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Two Transformations - Trees and Linear Embeddings

Original graph G:

1

2

3

4

5

6

7

8

9

10

Sample T uniformly at random:

Compute spine S from T (depth-first search):

5 2 1 2 3 2 5 6 4 6 7 6 5 8 9 8 10

5 2 1 3 6 4 7 8 9 10
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Compute spine S from T (depth-first search):
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Two Transformations - Trees and Linear Embeddings

Original graph G:

1

2

3

4

5

6

7

8

9

10

Sample T uniformly at random:

1

2

3

4

5

6

7

8

9

10

Compute spine S from T (depth-first search):

5 2 1 2 3 2 5 6 4 6 7 6 5 8 9 8 10

5 2 1 3 6 4 7 8 9 10

Properties: ([HLP08])
φS(u) ≤ 2φT (u) ≤ 2φG(u)

E [φS(u)] ≤ 2E [φT (u)] = 2φr (u) 11
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Cluster Specialists

• A specialist is a basis function ε : V → {−1, 1,�}

• “�” - on some inputs a specialist can offer no prediction

• Given S denote the vertices {1, . . . , n} in linear order

• For a vertex v ∈ V a cluster specialist predicts:

ε`,ry (v) :=




y ` ≤ v ≤ r

� otherwise x ` x x x r x x

X ε`,ry= (·)

• How to construct a specialist set?

• Needs to be complete (any labeling u ∈ {−1, 1}|V | is covered)

• The ‘covering set’ of a labeling should not be too large
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Cluster Specialists

• A specialist is a basis function ε : V → {−1, 1,�}
• “�” - on some inputs a specialist can offer no prediction

• Given S denote the vertices {1, . . . , n} in linear order

• For a vertex v ∈ V a cluster specialist predicts:

ε`,ry (v) :=




y ` ≤ v ≤ r

� otherwise x ` x x x r x x

X ε`,ry= (·)

• Two specialist sets:

Fn := {ε`,ry : `, r ∈ [n], ` ≤ r ; y ∈ {−1, 1}}, |Fn| = O(n2)

Bm,n :=

{
{εm,n
−1 , ε

m,n
1 } m = n

{εm,n
−1 , ε

m,n
1 }∪Bm,bm+n

2 c ∪ Bdm+n
2 e,n m 6= n

, |B1,n| = O(n)
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Basis Set B1,n

Spine S

Basis
B1,8

ε
1,8
y ε`,ry (v) :=

y ` ≤ v ≤ r

� otherwise

• B1,n is complete

• Maximum number of

specialists required to cover a

labeling u ∈ {−1, 1}|V | is

bounded above by

2(φS(u) + 1)dlog2
n
2
e

• Only Θ(log n) specialists are

‘active’ at any given time

(O(n2) for basis set Fn)
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Specialists Example - USPS

Image Source: [YHW18]

• USPS Dataset (hand-written digits)

• 16× 16 pixels → points in R256

• Build graph by connecting each point with its 3 nearest

neighbors
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Specialists Example - USPS

Original Graph G Linear Embedding (Spine) S
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Algorithm
PREDICTING SWITCHING GRAPH LABELINGS WITH CLUSTER SPECIALISTS

Algorithm 1: SWITCHING CLUSTER SPECIALISTS

input : Specialists set E
parameter : ↵ 2 [0, 1]
initialize : !1  1

|E|1, !̇0  1
|E|1, p 0, m 0

for t = 1 to T do
receive it 2 V
set At := {" 2 E : "(it) 6= ⇤}
foreach " 2 At do // delayed share update

!t,"  (1� ↵)
m�p" !̇t�1," +

1� (1� ↵)
m�p"

|E| (1)

predict ŷt  sign(
P

"2At
!t," "(it))

receive yt 2 {�1, 1}
set Yt := {" 2 E : "(it) = yt}
if ŷt 6= yt then // loss update

!̇t,"  

8
><
>:

0 " 2 At \ Ȳt

!̇t�1," " 62 At

!t,"
!t(At)
!t(Yt)

" 2 Yt

(2)

foreach " 2 At do
p"  m

m m + 1

else
!̇t  !̇t�1

2

20



Algorithm Intuition

• Weight vector ωt ∈ [0, 1]|E| maintained

• Weight ωt,ε corresponds to our ‘confidence’ in specialist ε

• On each trial set “active” specialists

At := {ε ∈ E : ε(it) 6= �}
• Take the weighted-majority vote of specialists in At

• Decrease weight of incorrect specialists

• Increase weight of correct specialists

• Share some of the weight among all specialists after each

update (can be done efficiently)

21



Mistake Bound Guarantees

For a sequence of K distinct labelings u1, . . . ,uK , let

Hk :=
∑

(i,j)∈ES

[ [
[uk(i) 6= u

k(j)] ∨ [uk+1(i) 6= u
k+1(j)]

]
∧

[
[uk(i) 6= u

k+1(i)] ∨ [uk(j) 6= u
k+1(j)]

] ]
Static Bounds

[HLP08] O
(
φG (u) log n

φG (u)
+ φG (u)

)
[HP06] O (φG (u)RG)

Switching Mistake Bounds

Fn O
(
φG (u1) log n +

K−1∑
k=1

Hk (log n + logK + log logT )

)
B1,n O

((
φG (u1) log n +

K−1∑
k=1

Hk (log n + logK + log logT )

)
log n

)

Time Complexity (per trial)

Fn O(n2)

B1,n O(log n) 22
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Experiments
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Mean cumulative error over 12 iterations of 10 switches every 100 trials

on an 4096-vertex graph. Solid lines SCS-F and SCS-B show the mean

cumulative error of an ensemble size of 33, dashed lines show the average

cumulative error of a single instance (ensemble size 1). 23
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Conclusion

• Solved the problem of efficient online prediction of switching

graph labelings

• Described the machinery of Cluster Specialists

• Proved smooth mistake bounds

• Exponential speed up with B1,n

• Future work:

• New methods of constructing specialist sets (e.g., hierarchical

clustering)

• Further experiments

24



Thank you!

(Thank you to Fabio Vitale for some slides)
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