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For instance the condensed"‘-__
matter electronic preprint :

 Mathematics (Graph Theory, archives have gone from 35 }
Dynamical Systems) papers in 1997 with a word %
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Notation

Rank 1

vertex -.,

| will focus on Simple Graphs Ky = t

with multiple edges allowed

(no values or directions on edges, no values for vertices)
N = Number of vertices in graph
 E = Number of Edges in Graph
 k = degree of a vertex
* k, = Maximum degree of graph
= Degree of rank 1 vertex
« K=<k>=average degree = 2E/N

* Degree Distribution
n(k) = number of vertices with degree k
p(k) = n(k)/N = normalised distribution

[Bn)] 2
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Real Networks
« Short Distance Scales

 Long Degree Distributions

d < O(In(N))

ky > O(In(N))

Distance Tail of Degree Maximum
Scale d Distribribution Degree k,
Large No Tail Fixed
Lattice d ~ NT/dm o(K-K,) Ko
Watts-Strogatz Small No Taill V.Small
Small World d ~ log(N) ~ d(k-Ky) ~ K,
Erdés-Réyni Small Short Tall Small
Random d ~ log(N) <k>k g=<k> /K! ~log(N)
Poisson
Small Long Talil Large = HUBS
Scale-Free d ~ log(N) ~K ~k10r-1)
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Long Tails = Hubs

Hubs are vertices of high degree
o Lattices, WS Small World,

N=10"6, K=4 Power Law and Random

random networks have no 67 .
hubs, . *
k < k; =< O(In(N)) ;
— 4fA
rand.net. N=10°, <k>=4 = k= 17E _ |3 Line = (k+0.42)282
5 e
» Only a long tailed degre€¢ 2o . .
distribution has hubs 9 Binomiay %, TR
e.g. POWER LAW
3 01 o5 1 \ | ‘ 3.5
n(k)~ 1/k I’ / log_10(k) 5
k < k, = O(N'2) | L - egree
-2 =k og (k)

has N=106 <k>=4 = Kk, ~2520
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N=200,

Random

<k>~4.0, vertex size « Kk

Scale-Free
= Power-Law n(k)
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. . : TI(K)
Growth with Preferential Attachment (*)
(Yule 1925, 1944; Simon 1955; Price 1965,1976; =y >
Barabasi,Albert 1999 ) ,7  “l2E)
/
1. Add new vertex attached to /

- =>
/ -
one end of 2<k> new edges.// 5/(2E)

2. Attach other ends to existing
vertices chosen with
probability IT proportional to
their degree

T1(k) = k / (2E) IRSeSI.IlltF |
Preferential Attachment | Ocale-rree
' n(k) ~ k7 |

|

“Rich get Richer” |
Page 8 © Imperial College London I y=3



Scale-Free Growing Model comments

« Growth not essential
— rewiring with reattachment probability I = y~1.0
— mixture of rewiring and new edges
— Hamiltonian methods

* Network not essential — k=frequency of previous choices

* Generalised attacl?ment p{obability
Nk =(1-p)s=+P > 2<y=l+—2 <o
------ 2E N p,(2-¢)

« BUT if lim,__ I1(k) oc k™ forany a#1 thena
power law degree distribution Is
not produced!

Page 9 © Imperial College London



Walking to a Scale-Free Network

(TSE, Klauke 2002; Saramaki, Kaski 2004;
TSE, Saramaki 2004)

1. Add a new vertex with 2<k>
new edges

2. Attach to existing vertices,
found by executing a random
walk on the network of
L steps

—_—
o~~~

=>» Probability of arriving at a vertex
o« number of ways of arriving at vertex
=k, the degree

=, Lreferential Aftachment y=3



Naturalness of the Random Walk algorithm

Automatically gives preferential attachment for any shape
network and hence tends to a scale-free network

Uses only LOCAL information at each vertex

Simon/Barabasi-Albert models use global information in their
normalisation

Uses structure of Network to produce the networks

— a self-organising mechanism

e.g. informal requests for work on the film actor’s social network
e.g. finding links to other web pages when writing a new one

Barabasi-Albert do NOT need a network, results and equations known
from non-network work of Yule 1925; Simon 1955; Parker 1965; ...

Page 11 © Imperial College London



Howlong °
a walk Is
needed =
for a 5 -

scale-free adl
network? 10

-12

tr3 N=1le6 m=2v=31=0 -+

|=
=1
y *§*§ |_7 ; ¥ !
.
X . f;‘é*
L=0 -
Pure Random
Attachment

=>exponential
graph

0.5 1

1.5 2
log10(k)

« Walks of length ONE are usually sufficient to generate
reasonable scale-free networks

= Degree Correlation Length <1 < d (any distance scale)

Page 12
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Does the

average 0=
degree 27
<k> 4t
matter? = |
S s
g
_10_
NO |
14 +
0 1 2 3 4 ) 6

log10(k)
except for <k>=2 where a tree graph is generated
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Long Walk Varlants L 7

-0.1

Is the Walk Algorithm o 38 —
= I N=le6 m=2|=7v=1 +
Robust? g, 36 . Eg “  Power
YES 8 34 I7/—3 as | v=15
. . . ‘_8 3.2t ]\L k:oo_| P
» Different starting points § | “3”2___ LT LY
« Vary length of walks per .| ..+ 7 o
edge keep L=<L> fixed — sf
* Vary edges added per Y M T
vertex keep <k> fixed  _ _ Deviation from Pure Pref.Attach.
: P I N=le6m=21=7v=1 - M
« Allow multiple edges -.,':;: ! =
:_A_tltafhI T i
< 01 5
Good Power Laws g o
a

but power varies by ol
10% or 20% 03]
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Finite Size Effects for pure preferential attachment

p(k) = p, (k).Fs| —— |, p.(k)=

Scaling
Function

Fy(x) =1
if x<l

Page 15

(k) ({k)+2) |

172 2k(k+1)(k+2) Kk
tr3 N=1e6 m=2v=21=0 | A
0.4 =l
=7 |-

Pure
0.2 Pref.Attach.

_—
—’ s KT R
o i ¥ T ket
T Sl SEE Lo STt (15 g
o s
. &
O |

-04 r

Kk _cont

O 05 1 15 2 2%
log10(K) /I
100 runs to get enough data near k,
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Mean Field Exact Finite Size Scaling
Function F,

2

F s énalytic - - -
ME numerical N=1E6 X
erical N=1E5 O

(pure pref.attach.)

15 ¢
Can calculate the finite

size effects in the
mean field

approximation to find 05

F_s = (p(k)*k*(L+k)*(2+k)/12)

F (x) = erfc(x) 0 1 2 3 4 s
(k/IN™(1/2))
m+2

2
3
+ CXE)/(;X ) 2x+ HZ_; ; [1 + ((1 +’;n)5m+l,n )]XngI_In—3 (X)

(TSE+Saramaki, 2005;
generalisation of Krapivsky and Redner, 2002)
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Walk Data & Finite Size Scaling Function F

Similar shape but not exact fit

Log fractional deviation

F_sanalytic - - -k cont k 1 -

c =1 X |~ T B

_‘g 15 =3 [ ' I

5 |=4 O

o . =5 A

m p— |:6 \Y ] |

o= =7 < o

par 8

o

o

Q

£ x

55 ¥

7

> 1

g

= N=1E6 m=2 v=3 X (@g et

_1 l | I e I| N

1 2 3 4 5

ﬁ log 10(Kk)
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Powers and

Finite Size Effects

Best data is for k<k

Finite N effects irrelevant to real data
F.#0 only for largest degree vertex

k >k, ~ O(NY2)
Power law only ever for large k = corrections for small k

= Kk never large

cont

B O(N1/3)

gamma(k)

3.2

31t
3L
29
28 -7

27 ¢

2.6

" meanfield ------
N=le6 m=2v=1I=1 4
=7 X X

1 1.2 14 1.6 1.8
log10(k)

Large networks are only mesoscopic systems,

e.g. N=10° =3 network k., ~ 250, k; ~ 2500

= Small k deviations vital for all khnown networks

« Simple power law fits underestimate asymptotic power by

Page 18
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Random Walks as a SearchTool

Sample Networks via Random Walk

= Visit vertices with probability

Pyisilk) = kp(k) / (2E)
so Visit Hubs much more often,

=find them very quickly
» Estimate tail of degree distribution very quickly
« Estimates of size of graph possible

» Other biased walks possible
e.g. can sample vertices equally if slowly
(Orponen, Schaeffer, 2004)

Page 19 © Imperial College London



Random Walks as Diffusion

Adjacency fromitoj
matrix k
1
Probability of going Al]
from vertex j to vertex i ij — k
J
Number of random walkers "
at vertex i at time t Vi( )
— Solve Matrix Equation k;

v(t) = [P]' v(0) Markov process

Page 20 © Imperial College London



Simple Graph Diffusion Solution

Vi(t) = ¢

k, +Zc (/1 ) u(”)
n=2

/

First /

Eigenvector

(n 1) (k j
4 2FE

/

Eigenvectors and
eigenvalues of P

=4 >|4]2..2|2]=...

First
eigenvalue = 1

Page 21 © Imperial College London



Simple Graph Diffusion Solution

v.(t) = 2kllf e, (A) P+

1= >|4|>...

Eigenvectors u(" of largest eigenvalues tell us
about small regions poorly connected to main
component (Eriksen et al 2003)

Small Region
u; ~1

Main Component,
u,~0

Page 22 © Imperial College London



Diffusion as Ranking

» Long time solution gives a ranking of vertices
Rank of vertex i = entry i of eigenvector of
largest eigenvalue u'"),

* QOther types of walk
= other types of diffusion
= new weighted edges
= new ranking scheme
e.g. PageRank® (Google)

P.=(1-p.) 4y :
i =U=p Y 2 — _(in)
Y v (out) v k-

N -




Conclusions

« Random Walk probes global structure of
network but uses only local information
—> A Naturally Occurring Mechanism
— Can lead to Self-Organisation
— Useful Tool

* Used to grow network long power-law tails are a
robust outcome with a wide variety of powers
e.g. N=10° <k>=4
— 9=3 as N,k— 0 in Simon/BA models
Random Walk produces 2.4 < »< 5
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| couldn’t have done this without ...

* Project Students
Seb Klauke, JB Laloe, Christian Lunkes,
Karl Sooman, Alex Warren

* |ISCOM organisers
David Lane, Sander van der Leeuw,
Geoff West and all the ISCOM participants

* Collaborators
Daniel Hook, Carl Knappet, Ray Rivers,

Jari Saramaki

T.S.Evans, J.P.Saramaki “Complex Networks”
“Scale Free Networks from Self-Organisation” Cont Phvsi ’
Phys.Rev.E 72 (2005) 1 [cond-mat/0411390] 0256(?552?2'55 Y ra
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More Information

Following slides provide additional
information.
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More Information

Following slides provide additional
information.
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Explosion of interest — WHY?

Since 1997 there has been an explosion of interest in
networks by physicists.

For instance the
condensed matter
electronic preprint
archives have gone

from 35 papers in 1997

with a word starting
with Network in their
title to 344 last year,
increase of nearly
1000%

Updated from T.S.Evans, Contemporary Physics

45 (2004) 455 — 474 [cond-mat/0405123]
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Network* papers on cond-mat

o network* titles on cond-mat

@ network* records on cond-mat
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No. Papers
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Basic Definitions

A Network or Graph is a
collection of

N Vertices (nodes),/\A

pairs of which are

connected by E Edges
\/

m Z

This is a SIMPLE graph, it has no other information.

= /I

Page 29 © Imperial College London
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Degree (connectivity)

 The Degree k of a vertex is the number of edges
attached to it.

Degree
k=4

 The Degree Distribution n(k) is the number of
vertices with degree k

k=2 3 3-

- ;ul

3 3 Degree k

n(k)
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Network Distance

* Counting one for each edge traversed, we
can find the shortest path between any two
vertices, giving a distance between the two.

* The longest of these shortest paths is the
diameter.

1 1

0 1
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Cluster Coefficient

* Clustering coefficient c:
Fraction of the neighbours which are
themselves connected
Simple measure of how much local structure

there is In a network

C=1/3

Page 32 © Imperial College London



Random Networks

* Take N vertices then consider every pair of
vertices and connect each with probability p

Erdos-Reyni (1959).

N=3

p~2/3

This is the opposite of the perfectly ordered lattice.
 Degree distribution is Poisson — short tailed

=» Maximum Degree k, ~In(N)

o Little local structure
 Short distances

Page 33
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c~1/N
<d>~In(N)

log_10(n(k))

Random
Data &
Poisson

" N=105 <k>=4, k&?



Watts and Strogatz's Small World Network (1998)

« Start with lattice, pick random edge and rewire it
— move ends to two new vertices chosen at random.

Page 34 © Imperial College London



Clustering and Length Scale in WS network

*As you rewire, distance drops very quickly, clustering does not
»Find SMALL WORLD NETWORKS with short distances of
random network, large clustering and local structure like a

lattice

1w ' | " L relative »-@-
l.-‘ c relative —m—
0.8 |
+Cluster coef
o 4
5 06 it
> T
o ¢ }
© 04 °, Distance +
0.2 + é
¢ [ )
®
0 . | 1
: 0 20 40 60 80
Lattlce\j t No.Rewirings
Small World

© Imperial College London




Network Comparison

Distance Degree Maximum Cluster
d Distrib. n(k) | Degree k, Coef. c
Large No Tail Fixed
Lattice d ~ Ndim o(k-k,) Ko ~0(1)
Watts-Strogatz Small No Talil V.Small
Small World d ~ log(N) ~ o(k-Ky) ~ K, ~ O(1/N)
Erdés-Reyni Small Short Tail Small
Random d ~ log(N) Poisson ~log(N) ~ O(1/N)
<k>k g=<k> /K!
Small Long Tail Large = HUBS
Scale-Free d ~ log(N) ~Kr ~k10-1) ~ O(1/N)

Page 36
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Scaling in Social Sciences

o
o
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Zipf law (1949) — City Sizes, Text Frequencies,...
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O O k) 0

 Every web page is a
vertex, every link is
an edge

« A few pages have a
tremendous amount
of links to them e.qg.
college home page,
eBay, Google
These are Hubs and
they are a key aspect
of how we navigate
and use the web

e\
% V" \W? ~OOY
A \O!
Co. Uk
Page 38 © Imperial College London
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eBay a‘ L0 UK
 Network from

buye r/SeI Ier Degree distribution, eBay Crawl (max 1000)
. 0% ‘ ‘ ‘ »
feedback links : : 2 3 }
14 ¢
» eBay is dominated 2 e
by a few very large 3- .,
- 4 | ~,
hubs. g .
« The slight curvature due to 25 \‘,“
crawling method. 5 “"‘w
« Fetched 5,000 pages and built . :’
up a network of 318,000 nodes *%
and 670,000 edges ] Se
9
* VR 2.3 log k

Page 39 © Imperial College London SOOman, Warren, TSE (2004)



Imperial Library

log(p(k))

Page 40

Used to detect groups from
lending patterns

Period 2 (excluding Haldane), degree distribution
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What sort of network has hubs? 7 Random

« Lattices, WS (Watts-
Strogatz) Small World
and random networks
have no hubs, e.g. the
largest degree is 17
for a random network with
N=106, <k>=4

 Want a network with a
long tailed degree
distribution
e.g. power law ~ k3

has max. degree ~2520
for N=106 <k>=4

log_10(n(k))

Page 41 © Imperial College London

= Data &
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Long Tails Description

* Most data sets have “long” tails for degree

distribution

Characterised by a few vertices with many edges - HUBS
e.g. maximum degree

Kmax = O(N") >> O(log(N)) v>0

Power Law: v=" Poisson

* These can often be reasonably described by a
power-law
n(k) ~ K7 (2<y<oo If N—oo, K< o)
BUT note that many other functions give
reasonable fits too!
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Models
« Short Exponential Tails

limk—>oo [n(k)] ~ exp(klkscale)
e.g.N=10°f, <k>=4 = k=17 = O(log(N))

-Random Graph Erd6s-Reyni (1959) (Poisson)
-Watts-Strogatz Small World (1998)
-Growing with Random Attachment

« Scale-Free = Long Power-Law Tails
lim,_, [n(k)] ~ k?  2<y<w
e.g. N=10%, <k>=4 = k,,,=2520 = O(N'?2)

-Simon (1955) [graph can be added easily]
-Barabasi-Alberts (1999) [graph not required]

Page 43 © Imperial College London



Scale Free Networks

* Any network with a power law degree distribution

for large degrees _ . B
/4
lim, [n(k)] oc k

* Always have many large Hubs nodes with many
edges attached — e.g. routers in the internet

« Scale Free means the number of vertices of degree
2k with those of degree k, always the same whatever
k , that is there is no scale for degree

n(2k)
n(k)

* |n practice there are at least two scales for finite N:
O(1) ~ Knin = K = Kpax ~ O(NV0-1))

Page 44 © Imperial College London
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Power Laws in the Real World

« 2"d Order Phase Transitions
(e.g. superconductors, superfluids,...)
Long range order = no scale = physical insight
Critical Phenomena — Renormalisation Group

e Scaling in Particle Physics

 Biology
— Kleiber's Law (1930’s) metabolic rate r o« m3/4 body mass,
explained (West, Brown, Enqvist 1997)

» Social Sciences
— Zipf's Law (1949)

City sizes, _—" 1| ™\

Word frequency, ... 7

-~ From T.S.Evans,

=>file compression - gﬁntgmporary
— ysics
) 45 (2004) 455 — 474
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Scaling in Complex Systems
« Earthquakes

(Gutenberg-Richter Law),
forest fires, 10 |
rice piles, '

5
107 ¢ o o0 Poog

rainfall distributions, _ » é °
etc etc :E
\E\ 16° Py
Self-Organised % 10*
e s 5
Criticality g 10'
< 10 :
« Still leading to 100 |
further physical 07 Lo i
- 1 1 1 1 10" 10° 100 10°
|nS|ghtS " ’ ' Eve:]:tsizel\fl)lmml ’ ’ ’
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Scaling in Social Sciences
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Scaling with every network

. Friendship networks - * Protein Interaction
Kevin Bacon game Networks

- Scientific Collaboration ~ * Power Distribution
Networks - Networks
Erdos number * |Imperial Library

» Scientific Citation Lending Data
Networks (Laloe, Lunkes, Sooman,

| Warren, Hook, TSE)
* Word Wide Web - eBay relationships

* |nternet (Sooman, Warren, TSE)
 Food Webs  Greek Gods
« Language Networks * Marvel Comic Heroes
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Scaling — a health warning

Almost every network is scale free if you believe
the literature but

* Not many decades of data
e.g. 10° vertex scale free network has largest
vertex about 1000 so at most two decades of
large degree scaling

« Data often a single data set no repeats
* Errors unknown in much social science data
* Other long tailed distributions have hubs too
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Applications: Archaeological Networks

« Ceremonial Pig exchange networks in Polynesia
(Hage & Harary)

* Central role of Delos in ancient Greek culture (Davis)
« Spread of Minoan influence as seen throuihﬁearly
)

A.Stephanos

\

Kastri
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What is the power?

* Local power always
below asymptotic

value of 3
3.2 . r
mean field ------
N=le6 m=2v=1lI=1 4
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§ N=co W XA X"’);’;"——
29 r VR
% ><><>A< XAXXA i ~
@) A
28 | oot x b
Pl >< . . A N
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X
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1 1.2 1.4 1.6 1.8 2
log10(Kk)
n(kr)—n(k)
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k(r—1)
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* However long walks fit

p(k)/p_inf(k)

mean field asymptotic
solution very well

04 T T T T T T
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A W A A
0 > A A
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0 0.5 1 1.5 2 2.5 3 3.5

log10(k)

From T.S.Evans, J.P.Saramaki Phys.Rev.E 72 (2005) 1 [cond-mat/0411390]
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Mean Field Solutions

* Assume behaviour of the
average number of vertices
of degree k given by the
average properties of the

network

These are excellent for
pure preferential
attachment (Simon/BA)

—

Log10 [data/(mean field)]

correlations in degrees of
neighbouring vertices

insignificant
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Limit of good data
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Finite Size Effects for pure preferential attachment

pk)=p, (k).F K , p. (k) = <k>(<k>+2)

A1/ 2 2k(k+1)(k+2)

Scaling Function F_ N
. k3
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From T.S.Evans, J.P.Saramaki 100 runs to get enough data near kI

Phys.Rev.E 72 (2005) 1 [cond-mat/0411390]
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