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Optimal Network

We are interested in how to deliver efficiently information in a
communications network (e.g. minimising the transit time of
information (packets))

Possible Approaches

» Given a network ‘find" an algorithm to optimise the delivery of
packets

» Given a packet delivering algorithm ‘build’ a network that is
optimal for this algorithm

R. Guimera et al., Optimal network topologies for local search with congestion, Physical Review Letters,89, 2002
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The Network

Fixed number of nodes and links.

v

v

Each node is a source of traffic and has a queue (M/M/1).

v

Each node produces the same amount of traffic.

v

Estimate the traffic load at node i using the Betweenness
Centrality (assumption: routing using shortest—path)

number of shortest—paths that visit a node
number of different shortest paths

Betweenness = Cg =
1/3 2/3
source destination

2/3 1/3
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Delay and Congestion

Total number of packets on the network, n(t): (from Little's law)

d n(t) AN n_t).
dt T

—~~

N = number of nodes, A = average traffic per node, T= average
delay.

AN — traffic going in

n(t)/T — traffic going out

For low load A << 1, T = average shortest—path.
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Delay and Congestion
Average time

Average time that a packet spends in queue /.

Wi = pi/(1 = pi)(1/p), where pi=Xi/u

L = service rate

Steady state solution d n(t)/dt = 0 gives:

N 1)
Z —NCg(i)

— pi(N
)

Congestion (queue node m

[Ae = (1(N —1))/Ca(m)|

Zhao et al., Physical Review E, 71, 2005
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Re—wiring the Network

» Given a load A
» the number of nodes N and links L

» find the network with minimum average delay (minimise 7)

The rewiring is done using simulated annealing

Polarisation = (¢£* — ) /¢, ¢*
average shortest path for
largest congestion load, / is
average shortest path
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number of nodes = number of links
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Some Properties

If N number of nodes equal to L the number of links then
» we can evaluate analytically the betweenness, if the graph has
S ‘stars’
Cg(ray)=N-1
Cg(SK)N? — NS + N2S + §% — NS?
52
where Cg(SK) is the betweennes of the skeleton graph.

Cg(centre) =

skeleton
> we can evaluate the optimal networks as a function of the load
» Transition: l1-star = 3—star = b—star = 7-star ...
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From Stars to Regular Graphs
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Robust Networks
Why?

» Increasing use of networks as

\ / infrastructure (e—commerce)

/| / » Increase threat of disruption of the
A communications due to failure or
attacks (lack of robustness).

All the nodes ‘look’ the same so no node is
special.

/ \ Solution
\ /

Removing one node will not disrupt the
‘flow of information’.
A. H. Dekker & B. D. Colbert, Network Robustness and Graph Topology, 27th Australasian Computer Science

Conference, 2004
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Robust Networks

] » Node connectivity = k: Minimum number of
nodes needed to remove to obtain a
\ / disconnected network

» Link connectivity = 7: Minimum number of
links needed to remove to obtain a
\ disconnected network.

\ » dpnin: minimum degree in the graph
N » Any graph: £ <1 < dnin,

Robust Networks (Dekker & Colbert): They are regular graphs with
kK=1n=dnin=d
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Regular and Symmetric Graphs

Theorem

(Dekker & Colbert) For any connected node-similar graph of
degree d:

1. n =d (link connectivity = degree)

2. ifd <4, then k = d (node connectivity = degree)
3. if the graph is symmetric, then k = d

4. k>2/3(d+1)

regular — node—similar — symmetric
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Which Regular Graphs?

» These graphs are all regular
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> The sum of the betweenness is the same ) ;Cg(i) = 80
» The average shortest path is the same.

» but the nodes congest at different loads

» the girth is different
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Removing Nodes in an Optimal Network
The load in the links

Symmetric networks:

load link = (W-1)t > ND

Node similar networks:

load linkmayx > —— > ——

where
» N = number of nodes
» k = degree of the nodes
» { = average shortest—path

» D = diameter of the network (largest shortest—path)
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Entangled Networks. Synchronisation

Very briefly (from review by Donetti et al. )
dx;
dtl = O'Z LiiH(x;)

F(x;) describes the evolution, H(x;) the coupling between
neighbours and o is a constant.
Ljj is the Laplacian matrix

—1 if there is a link between i and j
Lij = < ki if j=i, and k; is the degree of node i
0 if there is no link between i and j

L. Donetti et al. Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all

that. arXiv:cond:mat/0605565
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Entangled Networks. Synchronisation

‘Robust’ synchronised state if the ratio Q@ = Ay /A2 is as small as
possible; \; = eigenvalue of L. (Barahona and Pecora, Wang and
Chen)

Properties:

» Homogeneous regular networks (entagled networks Donetti et
al)
> long loops (large girth)

But synchronisation is not necessary a property wanted in
communication networks (route flapping).

Large girth means that if a link fails, there is a long detour when
delivering the information
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Adding Links

» In a rectangular—toroidal network the
addition of a small amount of random
links reduces the value of the critical
load in—spite of the increased
connectivity between the nodes (Fuks
and Lawniczak)

Braess’ paradox: Each user chooses to minimise its expected
delay by choosing an 'optimal’ route. The addition of an extra link
and hence route choice could reduce the delay. This is true for
uncongested networks but it may not be true for a congested
network.

D. Braess, Unternehmensfoschung, 12:258-268, 1968

Networks with Qs, Kelly et al, Calvert et al

Queen Mary University of London 17/19



Adding Links. Braess' Paradox
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More Questions and Some Conclusions

» Low loads: For simple networks (L = N) it can be solved, can
we use symmetry (group Th.) to obtain (an approximation
of) the optimal solution?

» ‘middle’ of the range loads: Look like entangled networks, are
they?

» desirable qualities: adding new links has a small effect on the
performance of the network (Braess).

» High loads: They seem to be node—regular networks (or even
Symmetric).

» Girth changes with the load and is relatively large (perhaps not
a good characteristic in communication networks).
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Possible future work

» Nodes that are not equialent (fast queues).
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