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The Tragedy of the Commons

» Every participant is called a

peer, and it has both client Overlay

and server roles. ~—8
 Peers are assumed to be / /

self interested ) L]
* |f there is no incentive for / /

contribution, there Is a / &

tendency to freeload - / -
* A solution for this is )

reciprocity =




A

Direct Reciprocity

o Tit-for-Tat

A helps B

. B

B helps A

Nature 437, 1291-1298 (2005)



A

Indirect Reciprocity
» Tit-for-Tit-for-Tat
First A helps B First A helps B
@ 0 &
\

Then B helps C Wn C helps A

Nature 437, 1291-1298 (2005)




Our Contribution

An analytic technique for the
geometric analysis of
contribution flows
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The Geometry of Indirect Reciprocity

 \We consider the O
contribution O
topology, where a
link IS created
between two nodes
If one gives a
contribution to the
other.

o—



The Geometry of Indirect Reciprocity

* Reciprocity creates
loops In the contribution
topology.
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requires non-cyclic
contribution flows



The Geometry of Indirect Reciprocity

* Reciprocity creates
loops In the contribution
topology.

« However, altruism
requires non-cyclic
contribution flows

« How can we model
these contribution
flows?



Functions in Graphs

 Domain:
— Nodes (N)
— Links (L)
— Cycles (C)

* Range:
— Reals (R)




Differential Operators in Graphs

* They operate over
node, link and cycle
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— Curl
— Laplacian




The Divergence

D(n;,1;) = 1 if link /; is outgoing from node n;
SOV T [; 1s Incoming to node n;




Calculating the Divergence

* |f we have a link function f, we calculate its
divergence simply by:
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Calculating the Divergence

* |f we have a link function f, we calculate its
divergence simply by:

dq it
R R
ds3 6 il

da =

15



The Gradient
 |tis just the transpose of the divergence
(s

* |f we have a node function F, we calculate its
gradient simply by:

g1 i
g2 ol
g3 | = | f2—Fi
g4 b U

g5 I iy




The Rotational Operators Q

* They require knowledge of
the cycle structure of the G
graph gG:

— Generate G’, an undirected C/ O

version of ¢

— Embed G’ in a surface with
minimum genus

— Recover a cellular cycle basis O ’)
from the embedding

— Define an orientation for the g/
cycle basis

— Use this oriented cycle basis y
to define the curl C/ \>




Graph Surface Embedding

« An embedding of G’ on a
surface S is a way of
drawing G'on S so that
there are no edge
crossings.

* Links become linesinS
 Nodes become points In S




Minimum Genus Embedding

* A surface embedding on
which § has the
minimum number of

. Sph
holes possible sl

Torus

0@

 \We focus on orientable,
closed surfaces, So
although the embedding
can be done on non- S3
orientable surfaces as
well



Cellular Cycle Basis

A minimum genus
embedding provides a

cellular cycle system,
where:

— Every link belongs to exactly
two cycles, a left cycle and a
right cycle

— Areas bordered by links
become polygonal faces

* |n a planar graph, each face
defines a cellular cycle

— The network becomes a
polyhedron




The Curl

Slent)) = 1 if link /; is positively oriented along cycle c;
A L Tl [; 1s negatively oriented along cycle c;




Calculating the Curl

* For a given link function f, we have that C f can be
calculated as:

T 1




The Adjoint Curl

* |t is just the transpose of the curl
S

 |f we have a cycle function F', we have for SF':

T 1
Q S1 Fl—Fg
S9 FQ—Fl
C1 A ll S3 — Fl—Fg
S4 Lol
S5 I 1




Gradients are Irrotational

* For any node function F' we have that:

CGF =0

* This is because every row of C'(a cycle ¢;) is
orthogonal to every column in G (a node n;)

— Two cases:

* If n; does not belong to C;, they will have no common nonzero
entries and ¢; - ; = 0.

* If 4 does belong to ¢;, we know that they have exactly two
common nonzero entries, corresponding to the two links in C;,
incident on 72;.



Gradients are Irrotational Sub-case 7

» In this case, we have two sub-cases: \li
— Sub-case 1: Both links incident to 1 2 \‘ i
have the same orientation with respect : :

L

to C;
* Their entries in will C; have the same sign, but

their entries in 75 will have opposite signs
(one outgoing, one incoming)

Sub-case 2
— Sub-case 2: The 2 links incident {o \].
have opposite orientations with respect \l“
to ¢;
C; n;

* Their entries in 11 ; will have the same sign,

but their entries in ¢; will have opposite signs /
(one with ¢;, one against it) / J



Gradients are Irrotational

* Thus, every link function f that has zero curl can be
represented as the gradient of a node potential ¢:

Cf=0 = f=Gg¢



Adjoint Curl functions are Incompressible

* For any cycle function F', we have that:

1) SHE—10)

 Proof:
— We have that:

(CG)T -Gt = DS
— And thus:

CG =0 1~——"%PBs =



Adjoint Curl functions are Incompressible

* Thus, every link function f that has zero divergence
can be represented as the curl of a cycle potential

Df =0 "= %<t



Second-Order Differential Operators

Node Eigenvalue: 0.46737 Node Eigenvalue: 0.5884

By combining D, G, C
and S we obtain
second-order
operators.

* The eigenvectors of
these operators
provide basis for
node, cycle and link
functions




The Node Laplacian

* The divergence of the

gradient (I \ R S
— Maps node functions to node Lyl o S e R i,
functions L St i

b — DIC — DD~

— Measures the difference
between the value of a node
function in a node and its
average value in the
neighborhood of the node

— Its eigenvectors provide a
basis for node functions: a
node basis




Node Laplacian Eigenfunctions

Node Eigenvalue: 0.19199

/. N2
97877767 SHEASL2T 1
L

tp://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.htm




The Irrotational Laplacian

 The divergence of the (a\ [ 2h+fa—fs—F )
b

gradient e
— Maps link functions to B s ;f:a i = —
link functions Z el i
\[5/ \2f5_f1_f2—f3—f4/

e —eUp)— DD,

— Its eigenvectors span
the cut-set subspace

* They provide a
basis for link
functions defined
over cut-sets (a
cut-set basis)




The Irrotational Laplacian

13— 14— 15— 16

* The divergence of the
gradient

— Maps link functions to
link functions

e —eUp)— DD,

— Its eigenvectors span
the cut-set subspace

* They provide a
basis for link
functions defined
over cut-sets (a
cut-set basis)




The Solenoidal Laplacian

 The adjoint curl of the (a2

CUI’| [o 2f2 __2f4__f5_f1_f3
— Maps link functions to i |F =l 2 s S 2 s e
link functions Ly D fi e Ol

\ 5 /) \ 2fs+fitfatfatfi )
Ls=SC=CtC

— Its eigenvectors span
the cycle subspace:

* They provide a
basis for link
functions defined
over cycles (a
cycle basis)




The SOIQnOidaI LaplaCian Link Eigenvalue: 0.46737

13—— 14—— 15—— 16

* The adjoint curl of the
curl

— Maps link functions to
link functions

Ls=SC s 6

— Its eigenvectors span
the cycle subspace:

* They provide a
basis for link
functions defined
over cycles (a
cycle basis)




Link Laplacian Eigenfunctions

It is easy to prove that the cycle and the cut-set
subspaces are orthogonal.

— We begin with the eigen-decompositions:

Ls=UsAsUZ Cr— U

Given that U Ug = I and U] U; = I, we have that:
Uilag= At LiUr = UrA;
Ui LsLiUr = AsUSUrA;

e But LoL; =SCGD =0, because CG = 0.



Link Laplacian Eigenfunctions
 Thus, we have that:
AsUsUrA;r =0

* Thus, for all eigenvalues, the eigenvectors of the
solenoidal Laplacian (the columns of Ug) are
orthogonal to the eigenvectors of the irrotational
Laplacian (the columns of Uj).

* The cycle subspace and the cut-set subspace are
orthogonal.



The Link Laplacian

* We define the link Laplacian following the usual vector
Laplacian from calculus:

VF=V(V-F)-V x(VxF)

* This is equivalent to:

o —=bp— lbs =Gl = 50

* The link Laplacian maps link functions to link functions



Link Laplacian Eigenfunctions

Link Eigenvalue: 0.46737 Link Eigenvalue: 0.46737 Link Eigenvalue: 0.5884

Link Eigenvalue: 0.76393 Link Eigenvalue: 0.76393 Link Eigenvalue: 1.1064

Link Eigenvalue: 1.1064 Link Eigenvalue: 1.1716 Link Eigenvalue: 1.1716




The Rank of Lg, Lrand L
e Gand L7y haverank [N| — 1

« Cand Lghave rank |C| —1
e Thus, £ has rank |N| + |C| — 2

* For planar graphs, the rank of L,
. due to Euler’'s Formula:

V—E+F=2



Modeling Indirect Reciprocity

* Any contribution field f can be expressed as the sum
of two orthogonal components:

— fy, a superposition of flows along cycles
* Incompressible (zero divergence)
* Modeled through a cycle potential .

— f4, a superposition of flows through cut-sets
* |rrotational (zero curl)
* Modeled through a node potential ¢.



Modeling Indirect Reciprocity
 To obtain f,, from f, we use the cycle projector P,
P, =UsUZ
— Thus: fo="Pypf
» To obtain f, from f, we use the cut-set projector P;:
Bl
— Thus: o

 We obtain Us and U; by selecting from Us or U; the
eigenvectors corresponding to nonzero eigenvalues



Calculating Potentials

* For the cut-set potential ¢ we have that:
Pof = Go

* Since we assume that we are dealing with a
connected graph, the rank of G is |[N| — 1.

— We perform an SVD on & and discard the singular
vectors related to the zero eigenvalues. We have:

N~

G:(]I[\ VIT

A

UITf 0 A?VIT¢



Calculating Potentials

 As A has full rank, we can solve for ¢:

¢=ViA 2ULf

* |n the same way, if we perform SVD on S and
discard zero eigenvalues:

A

S = [fahiud

* Following an identical procedure, we find that:

v = Vsh50ds




Conclusions

 |Indirect Reciprocity

— |s important for the practical deployment of overlay
networks

— Implies contribution flows built through the
superposition of cycles

* Differential Operators
— Provide basis for the cut-set and cycle spaces

— Allow contribution fields to be decomposed in these
components

* Applications?



Thank You!



Planarity and Embedding on the Sphere




