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The Tragedy of the Commons

• Every participant is called a 
peer, and it has both client 
and server roles.

• Peers are assumed to be 
self interested

• If there is no incentive for 
contribution, there is a 
tendency to freeload

• A solution for this is 
reciprocity

Overlay
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individuals experience a gain. The payoff structure yields an instance
of the familiar Prisoner’s Dilemma game21. If both players cooperate,
each receives b 2 c, which is better than what they would obtain by
both defecting, namely 0. But a unilateral defector would earn b,
which is the highest payoff, and the exploited cooperator would pay
the cost c without receiving any benefit. The payoff-maximizing
move is defecting.
This changes if the game is repeated for several rounds. For

simplicity we shall assume that in each round both players decide
simultaneously. We could also assume that they alternate, which
leads to a slightly different game22–24. The so-called folk theorem on
repeated games implies that if the probability for future rounds is
sufficiently high, cooperation can be sustained by so-called trigger
strategies, which switch to relentless defection as soon as the co-
player defects once25,26,87. A rational player must weigh the benefit of
exploiting the co-player in one round against the cost of forfeiting
collaboration in all future rounds, and would therefore abstain from
defection.
In the context of indirect reciprocity, any two players are supposed

to interact at most once with each other. Each player can experience
many rounds, but never with the same partner twice. Thus it is not
possible that a cheat is held to account by the victim. (In a variant of
this model, two players could interact on several occasions, one
always as the donor, the other as recipient, so that a return is again
excluded.) Clearly, trigger strategies can still ensure a cooperative
Nash equilibrium, such that if all players use them, no player would
have an incentive to deviate. In strategic thinking, only the payoffs
matter, not by whom they are provided. In this sense, the step from
direct to indirect reciprocity corresponds simply to the step from
personal enforcement to community enforcement27–30. However, a
trigger strategy prescribing each person to cooperate until the first
defection is personally experienced, and thenceforth to defect, hurts
the original wrong-doer only after many rounds. A strategy triggered
by the first defection in the population leaves cooperation at the
mercy of the first wrong move. In both cases many innocents would
be punished, and errors would cause havoc. Obviously, retaliation
should be directed towards the cheat rather than towards the whole
community. This requires more detailed information. Game theory
shows that even if information is transmitted only locally and errors

occur occasionally, cooperation can be sustained: there exist strat-
egies such that no rational player has an interest in deviating
unilaterally28.
In evolutionary game theory it is not assumed that players are

rational but only that successful strategies spread—by being inher-
ited, for instance, or copied through imitation or learning31. For
direct reciprocity, game theoretical analysis and individual-based
simulations have shown that a population of defectors can be
invaded by a small cluster of retaliators32 or even by a single
retaliator33. Typically, one considers a well-mixed population in
which individuals meet randomly and play a series of Prisoner’s
Dilemma games with each other. What counts is the total payoff.
Retaliators compensate for the loss of being exploited by a defector in
the first round with long sequences of altruistic exchange with other
retaliators. Once cooperation is established, a complex evolution
takes place, which depends on the size of the population, the cost-to-
benefit ratio, the average number of rounds and the probability of
errors32,34,35.
A similar model of indirect reciprocity assumes that, within a well-

mixed population, individuals meet randomly, one in the role of the
potential donor and the other as a potential recipient (Fig. 2). Each
individual experiences several rounds of this interaction in both
roles, but never with the same partner twice. Again, all that counts is
the total payoff. A player can follow either an unconditional strategy,
such as always to cooperate or always to defect, or else a conditional
strategy, which discriminates between the potential recipients on the
basis of past interactions. In a simple example, a discriminating
player can help the co-player if that co-player’s score exceeds a certain
threshold. A player’s score is 0 at birth, increases whenever that player
helps and decreases whenever the player withholds help. Individual-
based simulations show that if the cost-to-benefit ratio is sufficiently
low, and the amount of information about the co-player’s past
sufficiently high, cooperation based on discrimination can emerge.

Figure 1 |Direct and indirect reciprocity. a, Direct reciprocity means that A
helps B and B helps A. b, Indirect reciprocity comes in two flavours.
‘Upstream reciprocity’ (left) is based on a recent positive experience. A
personwho has been at the receiving end of a donationmay feelmotivated to
donate in turn. Individual B, who has just received help from A, goes on to
help C. ‘Downstream reciprocity’ (right) is built on reputation. Individual A
has helped B and therefore receives help from C. Mathematical
investigations of indirect reciprocity have shown that natural selection can
favour strategies that help others based on their reputation. Upstream
reciprocity is harder to understand2,56,77,78 but is observed in economic
experiments. In both cases, the decision to help can be interpreted as a
misdirected act of gratitude. In one case recipients are thanked for what
another did; in the other case they are thanked by someone who did not
profit by what they did.

Figure 2 | Building a reputation. In a natural extension of the basic model of
indirect reciprocity, an action between donor A and recipient B is observed
by a subset of the population36. The observers, the donor and the recipient
can inform others. People could pass on what has happened (the action) or
their assessment of the action. There are many possibilities of error: the
action or the intention of the donor can be interpreted differently by
different people; some individuals may receive conflicting information from
different sources; some individuals may not receive any information at all;
people can have different assessment modules. The reputation of a person is
therefore not simply a label that is visible to all others, but instead each
person has a private list of the reputation of others. Although language could
help to synchronize these lists42, ultimately reputation is in the eyes of the
beholder.
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individuals experience a gain. The payoff structure yields an instance
of the familiar Prisoner’s Dilemma game21. If both players cooperate,
each receives b 2 c, which is better than what they would obtain by
both defecting, namely 0. But a unilateral defector would earn b,
which is the highest payoff, and the exploited cooperator would pay
the cost c without receiving any benefit. The payoff-maximizing
move is defecting.
This changes if the game is repeated for several rounds. For

simplicity we shall assume that in each round both players decide
simultaneously. We could also assume that they alternate, which
leads to a slightly different game22–24. The so-called folk theorem on
repeated games implies that if the probability for future rounds is
sufficiently high, cooperation can be sustained by so-called trigger
strategies, which switch to relentless defection as soon as the co-
player defects once25,26,87. A rational player must weigh the benefit of
exploiting the co-player in one round against the cost of forfeiting
collaboration in all future rounds, and would therefore abstain from
defection.
In the context of indirect reciprocity, any two players are supposed

to interact at most once with each other. Each player can experience
many rounds, but never with the same partner twice. Thus it is not
possible that a cheat is held to account by the victim. (In a variant of
this model, two players could interact on several occasions, one
always as the donor, the other as recipient, so that a return is again
excluded.) Clearly, trigger strategies can still ensure a cooperative
Nash equilibrium, such that if all players use them, no player would
have an incentive to deviate. In strategic thinking, only the payoffs
matter, not by whom they are provided. In this sense, the step from
direct to indirect reciprocity corresponds simply to the step from
personal enforcement to community enforcement27–30. However, a
trigger strategy prescribing each person to cooperate until the first
defection is personally experienced, and thenceforth to defect, hurts
the original wrong-doer only after many rounds. A strategy triggered
by the first defection in the population leaves cooperation at the
mercy of the first wrong move. In both cases many innocents would
be punished, and errors would cause havoc. Obviously, retaliation
should be directed towards the cheat rather than towards the whole
community. This requires more detailed information. Game theory
shows that even if information is transmitted only locally and errors

occur occasionally, cooperation can be sustained: there exist strat-
egies such that no rational player has an interest in deviating
unilaterally28.
In evolutionary game theory it is not assumed that players are

rational but only that successful strategies spread—by being inher-
ited, for instance, or copied through imitation or learning31. For
direct reciprocity, game theoretical analysis and individual-based
simulations have shown that a population of defectors can be
invaded by a small cluster of retaliators32 or even by a single
retaliator33. Typically, one considers a well-mixed population in
which individuals meet randomly and play a series of Prisoner’s
Dilemma games with each other. What counts is the total payoff.
Retaliators compensate for the loss of being exploited by a defector in
the first round with long sequences of altruistic exchange with other
retaliators. Once cooperation is established, a complex evolution
takes place, which depends on the size of the population, the cost-to-
benefit ratio, the average number of rounds and the probability of
errors32,34,35.
A similar model of indirect reciprocity assumes that, within a well-

mixed population, individuals meet randomly, one in the role of the
potential donor and the other as a potential recipient (Fig. 2). Each
individual experiences several rounds of this interaction in both
roles, but never with the same partner twice. Again, all that counts is
the total payoff. A player can follow either an unconditional strategy,
such as always to cooperate or always to defect, or else a conditional
strategy, which discriminates between the potential recipients on the
basis of past interactions. In a simple example, a discriminating
player can help the co-player if that co-player’s score exceeds a certain
threshold. A player’s score is 0 at birth, increases whenever that player
helps and decreases whenever the player withholds help. Individual-
based simulations show that if the cost-to-benefit ratio is sufficiently
low, and the amount of information about the co-player’s past
sufficiently high, cooperation based on discrimination can emerge.

Figure 1 |Direct and indirect reciprocity. a, Direct reciprocity means that A
helps B and B helps A. b, Indirect reciprocity comes in two flavours.
‘Upstream reciprocity’ (left) is based on a recent positive experience. A
personwho has been at the receiving end of a donationmay feelmotivated to
donate in turn. Individual B, who has just received help from A, goes on to
help C. ‘Downstream reciprocity’ (right) is built on reputation. Individual A
has helped B and therefore receives help from C. Mathematical
investigations of indirect reciprocity have shown that natural selection can
favour strategies that help others based on their reputation. Upstream
reciprocity is harder to understand2,56,77,78 but is observed in economic
experiments. In both cases, the decision to help can be interpreted as a
misdirected act of gratitude. In one case recipients are thanked for what
another did; in the other case they are thanked by someone who did not
profit by what they did.

Figure 2 | Building a reputation. In a natural extension of the basic model of
indirect reciprocity, an action between donor A and recipient B is observed
by a subset of the population36. The observers, the donor and the recipient
can inform others. People could pass on what has happened (the action) or
their assessment of the action. There are many possibilities of error: the
action or the intention of the donor can be interpreted differently by
different people; some individuals may receive conflicting information from
different sources; some individuals may not receive any information at all;
people can have different assessment modules. The reputation of a person is
therefore not simply a label that is visible to all others, but instead each
person has a private list of the reputation of others. Although language could
help to synchronize these lists42, ultimately reputation is in the eyes of the
beholder.
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Our Contribution

• An analytic technique for the 
geometric analysis of 
contribution flows



• We consider the 
contribution 
topology, where a 
link is created 
between two nodes 
if one gives a 
contribution to the 
other.

The Geometry of Indirect Reciprocity



• Reciprocity creates 
loops in the contribution 
topology.
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loops in the contribution 
topology.

• However, altruism 
requires non-cyclic 
contribution flows
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• Reciprocity creates 
loops in the contribution 
topology.

• However, altruism 
requires non-cyclic 
contribution flows

• How can we model 
these contribution 
flows?

The Geometry of Indirect Reciprocity



Functions in Graphs

• Domain:
– Nodes (   )
– Links (   )
– Cycles (   )

• Range:
– Reals (   ) 
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Differential Operators in Graphs

• They operate over 
node, link and cycle 
functions

• Equivalent to the well 
known vector operators:
– Divergence
– Gradient
– Curl
– Laplacian −4 −3 −2 −1 0 1 2 3 4
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The Divergence

D(ni, lj) =

{

1 if link lj is outgoing from node ni

−1 if link lj is incoming to node ni

n1
n2

n3 n4

l1 l2
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l4

l5

1 0 -1 0 0
0 1 1 0 -1
-1 0 0 -1 1
0 -1 0 1 0
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l1 l2 l3 l4 l5



Calculating the Divergence

• If we have a link function   , we calculate its 
divergence simply by: 

14









d1

d2

d3

d4









=









1 0 −1 0 0

0 1 1 0 −1

−1 0 0 −1 1

0 −1 0 1 0

























f1

f2

f3

f4

f5

f6

















Df =

f



Calculating the Divergence

• If we have a link function   , we calculate its 
divergence simply by: 
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The Gradient

• It is just the transpose of the divergence

• If we have a node function   , we calculate its 
gradient simply by: 
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The Rotational Operators
• They require knowledge of 

the cycle structure of the 
graph   :
– Generate    , an undirected 

version of   
– Embed     in a surface with 

minimum genus
– Recover a cellular cycle basis 

from the embedding
– Define an orientation for the 

cycle basis
– Use this oriented cycle basis 

to define the curl
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G
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Graph Surface Embedding

• An embedding of     on a 
surface     is a way of 
drawing     on     so that 
there are no edge 
crossings.

• Links become lines in
• Nodes become points in
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Minimum Genus Embedding

• A surface embedding on 
which    has the 
minimum number of 
holes possible

• We focus on orientable, 
closed surfaces, 
although the embedding 
can be done on non-
orientable surfaces as 
well
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Cellular Cycle Basis

• A minimum genus 
embedding provides a 
cellular cycle system, 
where:
– Every link belongs to exactly 

two cycles, a left cycle and a 
right cycle

– Areas bordered by links 
become polygonal faces

• In a planar graph, each face 
defines a cellular cycle

– The network becomes a 
polyhedron



The Curl
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Calculating the Curl

• For a given link function   , we have that       can be 
calculated as:
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The Adjoint Curl
• It is just the transpose of the curl

• If we have a cycle function    , we have for      :
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Gradients are Irrotational

• For any node function    we have that:

• This is because every row of    (a cycle   ) is 
orthogonal to every column in    (a node    )
– Two cases:

• If     does not belong to    , they will have no common nonzero 
entries and                     .

• If     does belong to    , we know that they have exactly two 
common nonzero entries, corresponding to the two links in     , 
incident on     .
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Gradients are Irrotational

• In this case, we have two sub-cases:
– Sub-case 1: Both links incident to    

have the same orientation with respect 
to  

• Their entries in will    have the same sign, but 
their entries in     will have opposite signs 
(one outgoing, one incoming)

– Sub-case 2: The 2 links incident to   
have opposite orientations with respect 
to   

• Their entries in     will have the same sign, 
but their entries in    will have opposite signs 
(one with     , one against it)
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Gradients are Irrotational

• Thus, every link function    that has zero curl can be 
represented as the gradient of a node potential   :φ

Cf = 0 ⇒ f = Gφ

f



Adjoint Curl functions are Incompressible

• For any cycle function   , we have that:

• Proof:
– We have that:

– And thus:
(CG)T = G

T
C

T = DS

CG = 0 ⇐⇒ DS = 0

F

DSF = 0



Adjoint Curl functions are Incompressible

• Thus, every link function    that has zero divergence 
can be represented as the curl of a cycle potential   :ψ

Df = 0 ⇒ f = Cψ

f



Second-Order Differential Operators

• By combining   ,   ,    
and    we obtain 
second-order 
operators.

• The eigenvectors of 
these operators 
provide basis for 
node, cycle and link 
functions
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The Node Laplacian
• The divergence of the 

gradient
– Maps node functions to node 

functions

– Measures the difference 
between the value of a node 
function in a node and its 
average value in the 
neighborhood of the node

– Its eigenvectors provide a 
basis for node functions: a 
node basis
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Node Laplacian Eigenfunctions

http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html
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Node Eigenvalue: 0.80861
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Node Eigenvalue: 0.80861
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Node Eigenvalue: 1.1601
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The Irrotational Laplacian

• The divergence of the 
gradient
– Maps link functions to 

link functions

– Its eigenvectors span 
the cut-set subspace

• They provide a 
basis for link 
functions defined 
over cut-sets (a 
cut-set basis)

n1
n2

n3 n4

l1 l2

l3

l4

l5

LI = GD = D
T
D












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
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






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
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2f1 + f4 − f3 − f5

2f2 + f3 − f4 − f5

2f3 + f2 − f1 − f5

2f4 + f1 − f2 − f5

2f5 − f1 − f2 − f3 − f4










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The Irrotational Laplacian

• The divergence of the 
gradient
– Maps link functions to 

link functions

– Its eigenvectors span 
the cut-set subspace

• They provide a 
basis for link 
functions defined 
over cut-sets (a 
cut-set basis)
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The Solenoidal Laplacian

• The adjoint curl of the 
curl
– Maps link functions to 

link functions

– Its eigenvectors span 
the cycle subspace: 

• They provide a 
basis for link 
functions defined 
over cycles (a 
cycle basis)
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n3 n4
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T
C













l1

l2

l3

l4

l5













=












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
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The Solenoidal Laplacian

• The adjoint curl of the 
curl
– Maps link functions to 

link functions

– Its eigenvectors span 
the cycle subspace: 

• They provide a 
basis for link 
functions defined 
over cycles (a 
cycle basis)
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• It is easy to prove that the cycle and the cut-set 
subspaces are orthogonal. 
– We begin with the eigen-decompositions:

• Given that                  and                , we have that: 

• But                                , because             .

Link Laplacian Eigenfunctions

LS = USΛSU
T
S LI = UIΛIU

T

I

U
T
S US = I U

T

I UI = I

U
T
S LS = ΛSU

T
S

LIUI = UIΛI

LSLI = SCGD = 0 CG = 0

U
T
S LSLIUI = ΛSU

T
S UIΛI



• Thus, we have that:

• Thus, for all eigenvalues, the eigenvectors of the 
solenoidal Laplacian (the columns of     ) are 
orthogonal to the eigenvectors of the irrotational 
Laplacian (the columns of     ).

• The cycle subspace and the cut-set subspace are 
orthogonal.

Link Laplacian Eigenfunctions

ΛSU
T
S UIΛI = 0

US

UI



• We define the link Laplacian following the usual vector 
Laplacian from calculus: 

• This is equivalent to:

• The link Laplacian maps link functions to link functions

The Link Laplacian

∇
2
F = ∇(∇ · F) −∇× (∇× F)

LL = LI − LS = GD − SC



Link Laplacian Eigenfunctions
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•     and      have rank
•     and      have rank
• Thus,      has rank

• For planar graphs, the rank of      
equals    , due to Euler’s Formula:

The Rank of      ,      and 

|N|− 1G

C |C|− 1

LL

LS

LI

|N| + |C|− 2

|L|
LL

V − E + F = 2

The Rank of      ,      and LS LI LL



• Any contribution field    can be expressed as the sum 
of two orthogonal components:
–    , a superposition of flows along cycles

• Incompressible (zero divergence)
• Modeled through a cycle potential   .

–    , a superposition of flows through cut-sets
• Irrotational (zero curl)
• Modeled through a node potential   .

Modeling Indirect Reciprocity

ψ

φ

f

fψ

fφ



• To obtain     from   , we use the cycle projector     :

– Thus:

• To obtain     from   , we use the cut-set projector     :

– Thus:

• We obtain      and      by selecting from      or      the 
eigenvectors corresponding to nonzero eigenvalues

Modeling Indirect Reciprocity
fψ f Pψ

fψ = Pψf

fφ = Pφf

fφ f Pφ

Pψ = ÛSÛ
T
S

Pφ = ÛI Û
T
I

ÛS ÛI US UI



• For the cut-set potential    we have that:

• Since we assume that we are dealing with a 
connected graph, the rank of     is           .
– We perform an SVD on     and discard the singular 

vectors related to the zero eigenvalues. We have:

Calculating Potentials
φ

Pφf = Gφ

|N|− 1G

G

ÛT

I f = Λ̂
1

2

I
V̂ T

I φ

G = ÛI Λ̂
1

2

I
V̂

T

I



• As    has full rank, we can solve for   :

• In the same way, if we perform SVD on    and 
discard zero eigenvalues:

• Following an identical procedure, we find that:

Calculating Potentials

φΛ̂

φ = V̂I Λ̂
−

1

2

I
ÛT

I f

S

S = ÛSΛ̂
1

2

S
V̂

T
S

ψ = V̂SΛ̂
−

1

2

S
ÛT

S f



• Indirect Reciprocity 
– Is important for the practical deployment of overlay 

networks
– Implies contribution flows built through the 

superposition of cycles
• Differential Operators

– Provide basis for the cut-set and cycle spaces
– Allow contribution fields to be decomposed in these 

components
• Applications?

Conclusions



Thank You!
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