

Indirect Reciprocity and Strategic Agents I

Raúl Landa Networks and Services Research Laboratory Department of Electronic and Electrical Engineering University College London

Overlay Networks

The Tragedy of the Commons

- Every participant is called a <u>peer</u>, and it has both client and server roles.
- Peers are assumed to be self interested
- If there is no incentive for contribution, there is a tendency to <u>freeload</u>
- A solution for this is <u>reciprocity</u>

Direct Reciprocity

• Tit-for-Tat

Nature 437, 1291-1298 (2005)

Indirect Reciprocity

Tit-for-Tit-for-Tat

Nature 437, 1291-1298 (2005)

Our Contribution

An analytic technique for the geometric analysis of contribution flows

We consider the contribution topology, where a link is created between two nodes if one gives a contribution to the other.

 Reciprocity creates loops in the contribution topology.

- Reciprocity creates loops in the contribution topology.
- However, altruism requires non-cyclic contribution flows

- Reciprocity creates loops in the contribution topology.
- However, altruism requires non-cyclic contribution flows
- How can we model these contribution flows?

Functions in Graphs

- Domain:
 - Nodes (N)
 - Links (L)
 - Cycles (C)
- Range:
 Reals (ℝ)

Differential Operators in Graphs

- They operate over node, link and cycle functions
- Equivalent to the well known vector operators:
 - Divergence
 - Gradient
 - Curl
 - Laplacian

The Divergence

 $D(n_i, l_j) = \begin{cases} 1 & \text{if link } l_j \text{ is outgoing from node } n_i \\ -1 & \text{if link } l_j \text{ is incoming to node } n_i \end{cases}$

	l_1	l_2	l_3	l_4	l_5
n_1	1	0	-1	0	0
n_2	0	1	1	0	-1
n_3	-1	0	0	-1	1
n_4	0	-1	0	1	0

Calculating the Divergence

• If we have a link function *f*, we calculate its divergence simply by:

$$Df = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ -1 & 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \end{pmatrix}$$

Calculating the Divergence

• If we have a link function *f*, we calculate its divergence simply by:

$$\begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{pmatrix} = \begin{pmatrix} f_1 - f_3 \\ f_2 + f_3 - f_6 \\ f_6 - f_1 - f_5 \\ f_5 - f_2 \end{pmatrix}$$

The Gradient

It is just the transpose of the divergence

$$G = D^T$$

• If we have a node function *F*, we calculate its gradient simply by:

$$\begin{pmatrix} g_1 \\ g_2 \\ g_3 \\ g_4 \\ g_5 \end{pmatrix} = \begin{pmatrix} F_1 - F_3 \\ F_2 - F_4 \\ F_2 - F_1 \\ F_4 - F_3 \\ F_3 - F_2 \end{pmatrix}$$

The Rotational Operators

- They require knowledge of the cycle structure of the graph G:
 - Generate \mathcal{G}' , an undirected version of \mathcal{G}
 - Embed \mathcal{G}' in a surface with minimum genus
 - Recover a *cellular cycle basis* from the embedding
 - Define an *orientation* for the cycle basis
 - Use this oriented cycle basis to define the curl

Graph Surface Embedding

- An embedding of G' on a surface S is a way of drawing G' on S so that there are no edge crossings.
- Links become lines in ${\mathcal S}$
- Nodes become **points** in \mathcal{S}

Minimum Genus Embedding

- A surface embedding on which S has the minimum number of holes possible
- We focus on orientable, closed surfaces, although the embedding can be done on nonorientable surfaces as well

Cellular Cycle Basis

- A minimum genus embedding provides a *cellular cycle system*, where:
 - Every link belongs to exactly two cycles, a *left* cycle and a *right* cycle
 - Areas bordered by links become polygonal *faces*
 - In a planar graph, each face defines a cellular cycle
 - The network becomes a polyhedron

The Curl

 $C(c_i, l_j) = \begin{cases} 1 & \text{if link } l_j \text{ is positively oriented along cycle } c_i \\ -1 & \text{if link } l_j \text{ is negatively oriented along cycle } c_i \end{cases}$

	l_1	l_2	l_3	l_4	l_5
c_1	1	-1	1	-1	0
c_2	0	1	0	1	1
<i>C</i> ₃	-1	0	-1	0	-1

Calculating the Curl

• For a given link function *f*, we have that *Cf* can be calculated as:

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} f_1 + f_3 - f_2 - f_4 \\ f_2 + f_5 + f_4 \\ -f_1 - f_5 - f_3 \end{pmatrix}$$

The Adjoint Curl

· It is just the transpose of the curl

 $S = C^T$

• If we have a cycle function F, we have for SF:

$$\begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{pmatrix} = \begin{pmatrix} F_1 - F_3 \\ F_2 - F_1 \\ F_1 - F_3 \\ F_2 - F_1 \\ F_2 - F_1 \\ F_2 - F_3 \end{pmatrix}$$

Gradients are Irrotational

• For any node function *F* we have that:

$$CGF = 0$$

- This is because every row of *C* (a cycle *c_i*) is orthogonal to every column in *G* (a node *n_j*)
 - Two cases:
 - If n_j does not belong to c_i , they will have no common nonzero entries and $c_i \cdot n_j = 0$.
 - If n_j does belong to c_i , we know that they have exactly two common nonzero entries, corresponding to the two links in c_i , incident on n_j .

UCL

Gradients are Irrotational

- In this case, we have two sub-cases:
 - <u>Sub-case 1</u>: Both links incident to n_j have the same orientation with respect to c_i
 - Their entries in will c_i have the same sign, but their entries in n_j will have opposite signs (one outgoing, one incoming)
 - <u>Sub-case 2</u>: The 2 links incident to n_j have opposite orientations with respect to c_i
 - Their entries in n_j will have the same sign, but their entries in c_i will have opposite signs (one with c_i , one against it)

Gradients are Irrotational

• Thus, every link function f that has zero curl can be represented as the gradient of a node potential ϕ :

$$Cf = 0 \Rightarrow f = G\phi$$

Adjoint Curl functions are Incompressible

• For any cycle function *F*, we have that:

$$DSF = 0$$

- Proof:
 - We have that:

$$(CG)^T = G^T C^T = DS$$

– And thus:

$$CG = 0 \iff DS = 0$$

Adjoint Curl functions are Incompressible

• Thus, every link function f that has zero divergence can be represented as the curl of a cycle potential ψ :

$$Df = 0 \Rightarrow f = C\psi$$

Second-Order Differential Operators

• By combining *D*, *G*, *C* and *S* we obtain second-order operators.

Node Eigenvalue: 0.46737

Node Eigenvalue: 0.5884

 The eigenvectors of these operators provide basis for node, cycle and link functions

Link Eigenvalue: 4

Link Eigenvalue: 4.8936

Link Eigenvalue: 4.4691

Link Eigenvalue: 5.1716

The Node Laplacian

- The divergence of the gradient
 - Maps node functions to node functions

 $\mathcal{L}_N = DG = DD^T$

- Measures the difference between the value of a node function in a node and its average value in the neighborhood of the node
- Its eigenvectors provide a basis for node functions: a node basis

$$\begin{pmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \end{pmatrix} = \begin{pmatrix} 2F_1 - F_2 - F_3 \\ 3F_2 - F_1 - F_3 - F_4 \\ 3F_3 - F_1 - F_2 - F_4 \\ 2F_4 - F_2 - F_3 \end{pmatrix}$$

Node Laplacian Eigenfunctions

The Irrotational Laplacian

- The divergence of the gradient
 - Maps link functions to link functions

 $\mathcal{L}_I = GD = D^T D$

- Its eigenvectors span
 the *cut-set subspace*
 - They provide a basis for link functions defined over cut-sets (a cut-set basis)

$$\begin{pmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \\ \ell_4 \\ \ell_5 \end{pmatrix} = \begin{pmatrix} 2f_1 + f_4 - f_3 - f_5 \\ 2f_2 + f_3 - f_4 - f_5 \\ 2f_3 + f_2 - f_1 - f_5 \\ 2f_4 + f_1 - f_2 - f_5 \\ 2f_5 - f_1 - f_2 - f_3 - f_4 \end{pmatrix}$$

The Irrotational Laplacian

- The divergence of the gradient
 - Maps link functions to link functions

 $\mathcal{L}_I = GD = D^T D$

- Its eigenvectors span
 the *cut-set subspace*
 - They provide a basis for link functions defined over cut-sets (a cut-set basis)

Link Eigenvalue: 1.1716

Link Eigenvalue: 1.1716

The Solenoidal Laplacian

- The adjoint curl of the curl
 - Maps link functions to link functions
 - $\mathcal{L}_S = SC = C^T C$
 - Its eigenvectors span the cycle subspace:
 - They provide a basis for link functions defined over cycles (a cycle basis)

$$\begin{pmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \\ \ell_4 \\ \ell_5 \end{pmatrix} = \begin{pmatrix} 2f_1 + 2f_3 + f_5 - f_2 - f_4 \\ 2f_2 + 2f_4 + f_5 - f_1 - f_3 \\ 2f_3 + 2f_1 + f_5 - f_2 - f_4 \\ 2f_4 + 2f_2 + f_5 - f_1 - f_3 \\ 2f_5 + f_1 + f_2 + f_3 + f_4 \end{pmatrix}$$

The Solenoidal Laplacian

- The adjoint curl of the curl
 - Maps link functions to link functions

 $\mathcal{L}_S = SC = C^T C$

- Its eigenvectors span the cycle subspace:
 - They provide a basis for link functions defined over cycles (a cycle basis)

Link Eigenvalue: 0.46737

Link Eigenvalue: 0.46737

Link Laplacian Eigenfunctions

- It is easy to prove that the cycle and the cut-set subspaces are orthogonal.
 - We begin with the eigen-decompositions:

$$\mathcal{L}_S = U_S \Lambda_S U_S^T \qquad \qquad \mathcal{L}_I = U_I \Lambda_I U_I^T$$

• Given that $U_S^T U_S = I$ and $U_I^T U_I = I$, we have that:

 $U_S^T \mathcal{L}_S = \Lambda_S U_S^T \qquad \qquad \mathcal{L}_I U_I = U_I \Lambda_I$

$$U_S^T \mathcal{L}_S \mathcal{L}_I U_I = \Lambda_S U_S^T U_I \Lambda_I$$

• But $\mathcal{L}_S \mathcal{L}_I = SCGD = 0$, because CG = 0.

Link Laplacian Eigenfunctions

• Thus, we have that:

 $\Lambda_S U_S^T U_I \Lambda_I = 0$

- Thus, for all eigenvalues, the eigenvectors of the solenoidal Laplacian (the columns of U_S) are orthogonal to the eigenvectors of the irrotational Laplacian (the columns of U_I).
- The cycle subspace and the cut-set subspace are orthogonal.

The Link Laplacian

 We define the link Laplacian following the usual vector Laplacian from calculus:

$$\nabla^2 \mathbf{F} = \nabla (\nabla \cdot \mathbf{F}) - \nabla \times (\nabla \times \mathbf{F})$$

• This is equivalent to:

$$\mathcal{L}_L = \mathcal{L}_I - \mathcal{L}_S = GD - SC$$

The link Laplacian maps link functions to link functions

Link Laplacian Eigenfunctions

Link Eigenvalue: 0.46737

Link Eigenvalue: 0.46737

Link Eigenvalue: 0.5884

DCL

Link Eigenvalue: 0.76393

Link Eigenvalue: 0.76393

Link Eigenvalue: 1.1064

Link Eigenvalue: 1.1716

Link Eigenvalue: 1.1716

The Rank of \mathcal{L}_S , \mathcal{L}_I and \mathcal{L}_L

- G and \mathcal{L}_I have rank $|\mathsf{N}| 1$
- C and \mathcal{L}_S have rank $|\mathsf{C}| 1$
- Thus, \mathcal{L}_L has rank $|\mathsf{N}| + |\mathsf{C}| 2$
- For planar graphs, the rank of \mathcal{L}_L equals |L|, due to Euler's Formula:

V - E + F = 2

Modeling Indirect Reciprocity

- Any contribution field f can be expressed as the sum of two orthogonal components:
 - $-f_{\psi}$, a superposition of flows along cycles
 - Incompressible (zero divergence)
 - Modeled through a cycle potential ψ .
 - $-f_{\phi}$, a superposition of flows through cut-sets
 - Irrotational (zero curl)
 - Modeled through a node potential ϕ .

Modeling Indirect Reciprocity

• To obtain f_{ψ} from f_{ψ} , we use the cycle projector P_{ψ} :

$$P_{\psi} = \hat{U}_S \hat{U}_S^T$$

- Thus: $f_{\psi} = P_{\psi}f$
- To obtain f_{ϕ} from f, we use the cut-set projector P_{ϕ} :

$$P_{\phi} = \hat{U}_I \hat{U}_I^T$$

– Thus: $f_{\phi} = P_{\phi} f$

• We obtain \hat{U}_S and \hat{U}_I by selecting from U_S or U_I the eigenvectors corresponding to nonzero eigenvalues

Calculating Potentials

$$P_{\phi}f = G\phi$$

- Since we assume that we are dealing with a connected graph, the rank of G is |N| 1.
 - We perform an SVD on G and discard the singular vectors related to the zero eigenvalues. We have:

$$G = \hat{U}_I \hat{\Lambda}_I^{\frac{1}{2}} \hat{V}_I^T$$
$$\hat{U}_I^T f = \hat{\Lambda}_I^{\frac{1}{2}} \hat{V}_I^T \phi$$

Calculating Potentials

• As $\hat{\Lambda}$ has full rank, we can solve for ϕ :

$$\phi = \hat{V}_I \hat{\Lambda}_I^{-\frac{1}{2}} \hat{U}_I^T f$$

 In the same way, if we perform SVD on S and discard zero eigenvalues:

$$S = \hat{U}_S \hat{\Lambda}_S^{\frac{1}{2}} \hat{V}_S^T$$

• Following an identical procedure, we find that:

$$\psi = \hat{V}_S \hat{\Lambda}_S^{-\frac{1}{2}} \hat{U}_S^T f$$

Conclusions

- Indirect Reciprocity
 - Is important for the practical deployment of overlay networks
 - Implies contribution flows built through the superposition of cycles
- Differential Operators
 - Provide basis for the cut-set and cycle spaces
 - Allow contribution fields to be decomposed in these components
- Applications?

Thank You!

Planarity and Embedding on the Sphere

